@

NAVAL POSTGRADUATE SCHOOL
Monterey, California

~A274 855
Ar\i\\\\\\\\\\\\\\\\\\‘\\\\\\\\\\\\\\\\\\l\\\\\

_DTIC

g P ECT

v JANZG 1994
THESIS ' D

A Functional Bar Code Inventory System
for
Marine Corps Systems Command
by

Richard M. Hancock
September, 1993

Thesis Advisor: William Haga
Co-Advisor: Shu S. Liao

Approved for public release; distribution is unlimited.

) V9402119
_@4 1 25 (il G

o

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
he time for reviewing instruction, searching existing data sources, gathering and maintaining the dats needed,
nd completing and reviewing the collection of information. Send comments regarding this burden setimate or any
pther aspect of thie collection of information, including suggestions for reducing this burden, to Washington
eadquarters Services, Directorate for Information Operations and Reports. 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
{0704-0188) Washington DC 20503.

AGENCY USE ONLY (Leave . REPORT DATE . REPORT TYPE AND DATES COVERED
blank) Sep 1953 Master’s Thesis, Final

TITLE AND SUBTITLE A Functional Bar Code 5. FUNDING NUMBERS
Inventory System for Marine Corps Systems Command

AUTHOR(S) Richard M. Hancock

PERFORMING ORGANIZATION NAME (S) AND ADDRESS (ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey CA 93943-5000

SPONSORING/MONITORING AGENCY NAME (S) AND ADDRESS (ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the
author and do not reflect the official policy or position of the

epartment of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for 12b. DISTRIBUTION CODE
public release; distribution unlimited A

ABSTRACT (maximum 200 words)

Marine Corps Systems Command, located in Quantico, Virginia, maintains

large amount of computer assets to suppert its vast and varied
perations. This property requires accurate record keeping to assure
accountability of each item throughout its lifetime, from initial
acquisition through disposal. This thesis designs and implements a Bar
‘ode Inventory System (BCIS) to support the management and accountability
of the command's assets. The BCIS is a fully tested, menu driven system
designed to increase the efficiency and effectiveness of the inventory

14. SUBJECT TERMS Bar Code Inventory, Intermec, Interscan, 15. NUMBER OF
PCIRL,Ada, Interactive Reader Language (IRL). PAGES 127

16. PRICE CODE

7. 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF CLASSIFICATION OF ABSTRACT
REPORT THIS PAGE ABSTRACT UL

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 o ' T ’ Standard Form 298 (Rev. 2-89)
Prescribed by ANS! Std. 239-18

Approved for public release; distribution is unlimited.

A Functional Bar Code Inventory System
for
Marine Corps Systems Command
by

Richard M. Hancock
Captain, United States Marine Corps
B.S., Randolph-Macon College, 1985

Submitted in partial fulfiliment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT
from the

POSTGRADUATE SCHOOL

Author:

Approved by:

Shu S. Liao,?‘hesis Co-Advisor

AR

DaviYR.\Vl:m' , Chairman
Department of Adnlinistrati iences

ABSTRACT

Marine Corps Systems Command, located in Quantico,
Virginia, maintains a large amount of computer assets to
support its vast and varied operations. This property
requires accurate record keeping to assure accountability of
each item throughout its lifetime, form initial acquisition
through disposal. This thesis designs and implements a Bar
Code Inventory System (BCIS) to support the management and
accountability of the command's assets. The BCIS is a fully
tested, menu driven system designed to increase the

efficiency and effectiveness of the inventory process.

Accesion For

NTIS CRA&I %
SPECTED 8 DTIC TAB
Unannounced 0
Justification

DTIC QUALTTY I

By
Distribution/

Availability Codes

. Avail and/or
Dist Special

4-(

TABLE OF CONTENTS

I. MRODUCTION S 8 08 5 900 886022 NE PSR EEN O ROODE OSSP SENEOOIBEBEESDEeSS 1

A. BACKGROUNDtiiinttiiitttianeeeneeannrsesanesannesenneeasnseannssnnss 1
B. PROBLEMS WITH MANUAL INVENTORY SYSTEMccccvvevnernnnnns 1
C. GOALS AND OBIECTIVES ittt ittt eeenseasaanaensennannn 2
D. CHAPTER DESCRIPTIONSiiiiiiiitiieeeiiennenensesecscaacseserssnnnne 2
II. SYSTEM ANALYSISiccteeccsncscnsssnsscssscsscsnnsanse &
A SURVEY PHASEttt titiittntinaeenseatosaseoasesosnesseassnesnenas 4
1. Methodologyc.oiiiiiiiiiiiiiiiiiiiii et iiiiaeearennaaaananananans 4

2. ApPPlicationciiiiiiiiii i i ettt e s 5

B. STUDY PHASEiiiiiiirttitirtrieerssreeernceseeerosearsoassnsananenes 6
P (= of o Voo o I oY 5 ¥ Nt 6

2. APPlicAtionttt e i e i e it 6

C. DEFINITION PHASE0iiiiiiiirnrenroennenrarsesnnoaennonenenananns 11
1. MethoQology ...ooiiiiiii e e et ettt 11

2. APPLACALION ittt ittt et 12

ITI. SYSTEM DESIGNvvceveverssessccscsassassansssansaas 17
A. IN T RODUC T ION ... ittt ittt teteeneoeeneesuonsncnassssssscnaacnsnsnns 17
B. OBJECT AND ATTRIBUTE IDENTIFICATIONcc.cviviivennnnnnn 18
C. OPERATIONS WITH OBIECT S itiititiitriiarrniecrnnenesnneannnns 19
D. VISIBILITY RELATIONSHIPSiitieirrinnnteonereneernnnenennnes 21
E. INTERFACE SPECIFICATIONS iiiiiiiiiititeinietennennennanans 21
IV. IMPLEMENTATIONcccevcecscscesanccccscsccsnssssanese 24
A CREATING SERIAL NUMBER FILE PHASEcciciiiviennecnnannns 24

B INVENTORY PHASEitttnienrnnarontorotsesaneaacasrssas nnasanonsas 26

C CREATE REPORTS PHASEovviiienneiinnsnneneerones cossonancscss 27
D PRINT BAR CODE LABELSciiiiiiiiirencestcsasncnosssoasnsasnns 29

E SYSTEM INTEGRATIONiiiiiiiiitiiiireneerenannnceseesssnaseenannnes 30

V. CONCLUSIONcccceveevsesssessnssncssasnascsssascnssanse 34
APPENDIX A: SOURCE CODEccvvvvvesennssccnnanssans 35
APPENDIX B: BCIS USER'S MANUALc.covveveecescncansss 98
A. INTRODUCTIONituunniinniniiiitiiitiie et emiiiinieeieaeeenannneess 98
B. INSTALLATION AND SETUPcooiiiiiiiiiiiiiinnnnnieeeeiinns 98

1. Compatibility and Requirementsc..ccvivvennn. 98

2. Installationc.ciiiiiiiiiiiiii i i i, 99

B = Y 8 ¥) < A AP PRP 100
C. STARTING THE SYSTEMiiuiimirtiniarenrneonenneenasanannananas 101
D. DOWNLOAD FILE TO BAR CODE READERcciceieenncnnncnnnnns 102
1. Establish a Connectioniiviiiiiiiiiiiiiiinnennnnnns 102

2. Set Protocol On Readerciiiiiiunnncnnenasenensens 102

3. Place CMR Listing in Proper Directory 104
4. Initiating Download Optioncoiiiiiiiiiiiiiiiinerneennns 104
5. Configure PCIRL for Communication 105

6. Downloading File to Readercciiviiiiiinennannnnn. 105

E. CONDUCTING THE INVENTORYciiiitvrierernransrenncncancnanas 106
F. RECEIVE INVENTORY RESULTS ... ittt tirttatntataroneoanannannnnnns 109
1 Receive Found File iiiiiiiiiiiiiiiiiiiiiiiiiienannn. 110

2 Receive Not Found Fileciiiiiiriiiiiiiiiiiiiiiinann, 112
3. Receive Both Filesciiiiiiiiiiiiiiiiiiiniininianiaannenas 114

4 Configure Intrscan for Communication 115
G. PRINT REPORT Siiiiiiiiieitiirireneesarsaseneseuesasanssnensnnanns 115
H. PRINT BAR CODE LABELSiitiititttieennnnnranacaasnanennes 117
I. EXIT THE SYSTEMci.iititititiinitnenrnonsssoasarenasosasesoracans 118
LIST OF REFERENCES theeasesssssseasrecesaanennsanss 119
INITIAL DISTRIBUTION LISTcc0vteeuencnsccassscenanss 120

I. INTRODUCTION

A. BACKGROUND

Marine Corps Systems Command (MARCORSYSCOM), located in
Quantico, Virginia, is responsible for the acquisition and
accountability of computer assets. Their current Consolidated
Memorandum Receipt (CMR)--a listing of all assets owned by the
command--is in excess of thirty pages with approximately 3,000
computer assets. The size of the CMR is further complicated by
the fact that many of these assets are portable, thus hampering
the command's ability to maintain proper accountability of these
assets.

The implementation of an automated inventory system will
increase the efficiency and effectiveness of the inventory
process and provide the command with the resources

necessary to maintain proper accountability of its computer

assets.

B. PROBLEMS WITH MANUAL INVENTORY SYSTEM

The manual system takes approximately six weeks to complete
an inventory. Many of the items are portable, thus complicating
the inventory process. Because of the length of time it takes tc
complete an inventory, many of the assets move from location to

location during the inventory. This results in some assets being

inventoried twice while other assets are never inventoried. This
problem hampers the command's ability to maintain proper

accountability of its computer assets.

C. GOALS AND OBJECTIVES

The primary goal of this project is to design, develop and
implement a bar code inventory system which could assist
MARCORSYSCOM in conducting an accurate and timely inventory of
its computer assets. Automating the inventory process will
provide substantial time savings and significantly increase the
accuracy of the inventories.

The automated system was designed using the Object-Oriented
Design approach and was implemented using Ada and Interative
Reader Language (IRL) programming languages. The system accepts
input from a bar code scanner, manual keypunch entries, and files
downloaded from the local area network (LAN). The Bar Code
Inventory System (BCIS) produces bar code labels and generates
periodic reports on the status of the assets within the command.
The BCIS is a fully integrated, menu driven system with
established communication between the various hardware
platforms--personal computer, bar code reader and bar code

printer.

D. CHAPTER DESCRIPTIONS
Chapter II studies the old system and its problems,

defines business needs and requirements, and evaluates

alternative solutions. The step by step strategies employed
during this analysis is covered in this charter.

Chapter III will review the System Design methodology used in
designing the Bar Code lInventory System (BCIS). The four phases
associated with Object-Oriented Design, object identification,
defining operations with each object, determination of
relationships between objects, and developing interface
specifications, will be covered.

Chapter IV covers the implementation of the BCIS. This
chapter discuses how the four phases of the system were !
implemented--creating a serial number file to download to the bar
code reader, conducting an inventory using the reader, processing
the results of the inventory into reports, and printing bar code
labels--and problems encountered while integrating these phases
into the BCIS.

Chapter V, the conclusion, determines whether the system is
operational and ready for implementation at MARCORSYSCOM.

Appendix A includes all the source code that was incorporated
in the BCIS. This section includes the programs written in Ada,
IRL, and the Batch File composed to integrate the system.

Appendix B is the user's manual. This chapter provides the
documentation necessary to install and operate the Bar Code

Inventory System.

II. SYSTEM ANALYSIS
The purpose of systems analysis is to study the current
business system and its problems, define business needs and
requirements, and evaluate alternative solutions. The three
phases used in the analysis of the Bar Code Inventory System
(BCIS) will be discussed in this section. The step-by-step
strategies for completing each phase will be discussed followed

by how that phase was applied in developing the BCIS.

A. SURVEY PHASE
1. Methodology

A project is initiated with a preliminary analysis of
project scope and feasibility. The survey phase determines
whether significant resources should be committed to the future
. phases of the life cycle. *During the Survey Phase, we define
the scope of the project, perceived problems and opportunities,
business and technical constraints, perceived project goals, and
possible solutions®" [Whitten, Bentley and Barlow, 1989, p.87].
Information gathered during this phase, although probably not
very detailed~-or even acurate--will be the starting point for a

detailed Systems Analysis [Page-Jones, 1988, p.21].

2. Application

The goal of this project was to develop an automated
inventory system which could assist Marine Corps Systems Command
(MARCORSYSCOM) in conducting an accurate and timely inventory of
existing assets. Captain Lang, the Resource Manager for the
Information Systems Management Division at MARCORSYSCOM, wanted
to limit the scope of the inventory system to include only
serialized assets--such as computers, printers, monitors, etc.
These types of assets have a high dollar value and represent the
majority of items on Captain Lang's Consolidated Memorandum
Receipt (CMR)-- a listing of all assets under his control. The
current CMR is in excess of thirty pages with approximately 3,000
serialized items that must be inventoried quarterly. The size of
the CMR is further complicated by the fact that many of these
assets are portable, thus making the inventory process extremely
difficult. The proper accountability of these assets is very
important and requires a great deal of time and effort. The
problems identified with the current system and the potential
benefits of automating this process will be discussed in the
following sections of this chapter.

It was decided that the scope of this work warranted
development as an individual thesis project. The core of the
work would be performed on a personal computer owned by the
author. MARCORSYSCOM provided the hardware necessary to automate

the current system to include: a bar code reader, scanner, bar

code printer, and manuals. The cost of the additional hardware
was considered negligible in comparison to the benefits expected
with a fully automated inventory system. A time span of nine
months, with commencement in December 1992 and system completion
by August 1993, was considered feasible. The Survey Phase was
accomplished during a single interview with Captain Lang that

took approximately one hour.

B. STUDY PHASE
1. Methodology
During this phase facts are cocllected about how the
current system functions. Problems with the current system are
identified and potential opportunities are diagnosed in an
attempt to improve the process. Data are collected using
interviews and modeling techniques to learn about the system.
*You need to understand the existing system, manual or
computerized, before you can design and build a new system."
[Whitten, Bentley, and Barlow, 1989, p.90]
2. Application
On 14 December 1992, the author took a four day research
trip to MARCORSYSCOM, which is located in Quantico, Virginia.
Captain Lang was interviewed to acquire an understanding of the
current inventory process. Captain Lang is accountable for all
the assets assigned to his division. He is responsible for

conducting quarterly inventories and possesses a thorough

understanding of the process. During the interview the author
developed a detailed understanding of the current system.
Physical data flow diagrams (DFDs) were drafted to document the
processes and the flow of data and information through the
existing system (see Figures 2.1 through 2.3). These models show
not only what a system does, but also how the system is
physically implemented. The use of these models helped the
author grasp the inputs, outputs, and processes, and the
relationships among the different processes of the system.

After evaluating the models and data collected during the

research trip, the following problems were identified:

1. Current system is inefficient resulting in a
slow inventory process;

2. Poor accountability; and

3. Duplication of effort.

The process of manually searching the CMR for a serial
number that matches the serial number on the asset was determined
to be the most inefficient and time-consuming process in the
system. The current CMR is in excess of thirty pages with
approximately 3,000 serial numbers. The CMR is organized in such
a way that each item, for example a monitor, can have many
National Stock Numbers (NSNs). Under each NSN there may be many
serial numbers. In order to efficiently match the serial number

of the asset with the serial number on the CMR the person

Recsﬁﬁiled
ngglg 4 :2*.3
Lnuentorg
rocess
Conﬁﬁeaegggrated Serial §
FIGURE 2.1 Physical Context Data Flow Diagram

aupglg Coneuaer ggperated Rﬁpon:ible Cor&e‘ated '
ep gnnotates $ CIR File
Sy T
A
R iled ChR
eceaﬁl ¢
Annotated fatched /
fr Lot " O Sridt ve (ot SR
or drop oci n catenal
5}3 reconcile 0 ith
'"HF $ on
ial §
oot Borsetption
ssets | J
FIGURE 2.2 PFPhysical Data Flow Diagram (Level 1)

B:ru} § and
ripti bt
Rtl natches description rri pes
ept scnptxon seru
ssets 8 asset v/ w nﬁcscnp
nu{ch
'S’:rtftfdl’s
CHR
(R File —
FIGURE 2.3 Physical Data Flow Diagram (Level 2)

10

conducting the inventory must know the NSN of the asset. This
information is not obtainable in the current system, forcing the
user to search each NSN for a serial number that matches. For
some items, such as monitors and printers, the user must search
through several pages of serial numbers to find a match. This
results in an inventory process that takes approximately six
weeks to complete.

By automating the process of searching the CMR for a
serial number, the problem of duplication of effort and poor
accountability could also be reduced. For example, many of the
items are portable, thus complicating the inventory process.
Because of the length of time it takes to complete an inventory,
many of the assets move from location to location during the
inventory. This results in some assets being inventoried twice
(duplication of effort) while other assets are never inventoried.
This creates a problem in the accountability of the command's

assets. By automating the current process the inventory could be

completed in less than a week, lessening the problem of assets
moving during the inventory. Automating the current process will

increase the efficiency and accuracy of the current system.

C. DEFINITION PHASE
1. Methodology
The goal of the definition phase is to develop a detailed

definition of the requirements and objectives of the proposed

11

system. Requirements are the blueprint that will be used to
design and implement the new system. Before moving on to
development, the developer must know exactly what the system is
supposed to do. “*The purpose of the Definition Phase is to
identify what the improved system must be able to do without
specifying how the system could or will do it*[Whitten, Bentley
and Barlow, 1989, p.156].

It is not only important that the system is built
correctly, but vital that the correct system is built. The
analyst should actively involve all of the end-users who were
identified during the Study Phase. It is important to give
end-users at every level of the organization the opportunity to
define goals, objectives, and information system needs. Proper
definition of the requirements is the first step toward
preventing future maintenance nightmares.

2. Application

The research trip identified the end user's information
needs and what functions the new system is expected to perform.
A six-week tuinaround time to complete an inventory was
considered unsatisfact~ry. The major goal of the new system was
to reduce the amount of time it takes to conduct an inventory and
thus increase the accuracy of the inventory.

Marine Corps Systems Command wanted to use bar code
technology to completely autcmate the inventory process. The

system needed to read the serial number of the asset, search the

12

CMR for a match, and produce a report specifying which serial
numbers were found. By using bar code technology, MARCORSYSCOM
felt the inventory process could be condensed into one week.
These basic requirements were used to model the new
system using logical DFDs (see Figures 2.4 and 2.5). Logical DFDs
are implementation-independent models that display the essential
requirements of the system--those requirements that must be
fulfilled no matter how the system might be implemented. These
models were presented to the end user and the following detailed

system requirements were drafted:

1. System will be a fully automated bar code inventory system
and will meet all specified requirements;

2. System will use bar code technology:
3. System will function on an IBM compatible desktop computer:
4. System will interface with the bar code reader and printer;

5. System scope will be limited to serialized assets: such as
computers, laptops, monitors, etc.;

6. User will provide a CMR file;

7. CMR will be obtained from an ASCli file contained in an
external file memory source;

8. The values of all serial numbers are of alpha-numeric type:

9. A serial number is a unique identifier--assets will not
have the same serial number;

10. The system will produce bar code labels to be affixed to
each asset. User will have the option of producing a batch
of labels from the CMR or individual labels by manual
keypunch entry;

13

Eocongi:g CHR
nglg ::::tion Report
ep <4
CHR
L &noentory
rocess 1
Serial 1
g:gt:
FIGURE 2.4 Logical Context Data Flow Diagram

14

/;:;;—NN__ Serial §
Seria

—pSerial § File

aupglg (R
ep
Nunbers
|
Reports
ornatted
toxder
Produce Pt t Fi}
Reports gorn epo:t:‘
ar Code
eader
Output
Serial § h
Qept gm J?J’
fissets

r Code
ader

Input

Reader

e

?ort
eader
ile

3orted

egder

Eornat

ﬁger

FIGURE 2.5 Logical Data Flow Diagram (Level 1)

15

11.

12.

13.

14.

15.

lé.

17.

System will prompt the user if the item scanned is
not on the CMR. The user will be prompted for a
description of the item and its location;

System output will be in CMR format with found serial
numbers annotated;

System will produce an exception report, listing the
serial numbers inventoried but not on the CMR;

System will be implemented in Ada or DBase III;

System will be menu driven and be user friendly (will
not require computer experience to operate the system);

System will be fully documented and a users manual will
accompany the system; and

System will be designed with ease of modification or
upgrade in mind.

16

III. SYSTEM DESIGN

A. INTRODUCTION

The purpose of the design phase is to design a software
solution for the new system, including a definition of the
interfaces among units and a detailed procedural flow. During
system design, the target system is organized into subsystems
based on both the analysis structure and the proposed
architecture. The system designer must decide what performance
characteristics to optimize, choose a strategy to attack the
problem, and make tentative resource allocations.

An Object-Oriented Design (OOD) strategy was employed to
design the Bar Code Inventory System. This method of design
results in a software solution that closely resembles the
real-world problem. Object- Oriented Design incorporates three
important software design concepts: abstraction, information
hiding and modularity. *All design methods strive for software
that exhibits these fundamental characteristics, but only OOD
provides a mechanism that enables the designer to achieve all
three without complexity or compromise® [Pressman, 1992, p.395].

The Design Phase uses the results of the System Analysis
Phase to complete several sequential steps. These steps and

their results are presented in the remainder of this chapter.

17

B. OBJECT AND ATTRIBUTE IDENTIFICATION

The system requirements and logical data flow diagrams were
used to identify the objects judged critical to the production of
the Bar Code Inventory System, (see Figure 3.1). The objects
identified were derived from nouns used in describing the system.
An object is a component which exists in the real world--a
person, place, thing, occurrence, role, or event--that is mapped

into the software domain. Objects are typically producers or

Objects Attribytes

CMR Listing File Name
Status

Serial Number Value
Position

Type
Found

Bar Code Reader Input File Name
Status

Bar Code Reader Output File Name
Status

Inventory None

Report File Name
Type

File Processor File Name
Type

Label Format
Size
Serial Number
Quantity

Serial Number File File Name
Size

FIGURE 3.1 Objects and Attributes of BCIS

18

consumers of information or an information item. Only those
objects that played a critical role in the system's purpose were
included, as these are the items which will eventually be
implemented as part of the solution.

Additionally, the defining characteristics or attributes of
the objects were defined. Attributes are values or features of
an object that distinguish one instance of an object from
another. For example, the attribute Value helps distinguish one
serial number from another. Identifying the attributes of an
object help the programmer define the functional relationship
between two instances of the same object. For example, the
system will produce two different reports--a CMR report and an
exception report. The attribute File Name and Type tell the
programmer that the two reports can be distinguished by the file

name and the type of report required.

C. OPERATIONS WITH OBJECTS

The major objects of interest and their attributes have been
identified, but that is not sufficient to establish the design of
the software solution. The next step ic to determine the
operations associated with each object, (see Figure 3.2). This
was accomplished by considering which operations can be performed
on or by a particular object. In identifying the operations
associated with an object the designer can characterize the

external behavior of that object. This external view captures

19

Qbiect

CMR Listing

Serial Number

Bar Code Reader Input

Bar Code Reader Output

Inventory

Report

File Processor

Label

Serial Number File

EIGURE 3.2

Operation

Open

Reset

Close

Get Serial Number
Get Line

Create

Mark

Return Value
Compare

Create

Open

Close

Add Serial Number
Get Serial Number

open

Close

Get Serial Number
Get Description
Get Location

Get Serial Number

Match Serial Numbers

Get Location of Asset
Get Description of Asset

Create

Close

Add Line

Format Exception Report

Format Serial Number File
Format CMR Report File
Format Exception File
Format Labels File

Create

Open

Close

Add Serial Number
Get Serial Number
Print Label

Create

Insert Serial Number
Sort by Value

Sort by Position

Mark Serial Number Found
Remove Serial Number

Objects and Operations of BCIS

20

the behavior of an object from the perspective of its clients
without concern for how the object will be implemented. By
separating the behavior of the object from its implementation

the principles of abstraction and information hiding are applied.

D. VISIBILITY RELATIONSHIPS

The next step in the Object-Oriented Design process is the
determination of how these objects relate to one another. To
establish the visibility relationship, each object is examined to
determine which objects it depends on and what objects depend on
it.

Figure 3.3 is a graphical representation of the relationships
between the various objects in the system. An object that points
to another signifies its dependence on that object. For example,
the object BCIS depends on all the other objects in the system to
perform its intended functions. Understanding the relationships
between objects simplifies the implementation process and
enforces the principles of modularity and cohesion. Taking
advantage of these inherent relationships will result in a

well-structured system that is easy to modify.

E. INTERFACE SPECIFICATIONS
The last step in the development process is to establish a
detailed design of the BCIS. The results of the prior

steps--Object and Attribute Identification, Operations

21

| .

iy |
erial
——p{ Nunber CIR — Rsset
Listing
Y

Inventory - 4 Label

Serial __]

b
Rt ‘__j
File —— 8CIS
Processor l
ricode 4 M Report
Input
gar Code ; T
-—;J eader
utput

FIGURE 3.3 BCIS Visibility Diagram

22

Y

with Objects and Vieibility Relationships--were used to organize
the target system into subsystems.

First, a separate package was created for each object. A
package is a separate compilation unit consisting of two parts: a
package body and a package specification. During this step the
package specification of each object was drafted. The package
specification can be regarded as the package's "shop-window® that
says what the package has to offer the potential user.

Next, the operations associated with each object were
incorporated into the package specifications. This allows the
designer to display what operations a package will perform,
without writing any code.

Finally, how a package interfaces with the other parts of the
program was specified. This was accomplished by declaring the
Visibility Relationships between packages in the package
specifications. The package specifications for each object are

listed in alphabetical order in Appendix A.

23

IV. IMPLEMENTATION

The Implementation Phase used the results of the Analysis and
Design Phases to create an automated inventory system. During
implementation the system was divided into four phases--creating
a serial number file to download to the bar code reader,
conducting an inventory using the reader, processing the results
of the inventory into reports, and printing the bar code labels
that will be attached to the assets prior to an inventory.

Each phase was implemented separately and then integrated
into the Bar Code Inventory System. This chapter will present
how each phase was developed and the problems that were

encountered during integration.

A. CREATING SERIAL NUMBER FILE PHASE

This portion of the system opens the CMR File--an ASCII file
containing a list of assets that need to be inventoried--and
searches the file for serial numbers. When a serial number is
found it is copied to a file called Readin. During the transfer
process the serial number is converted from the type string to a
private type. Private type is an Ada convention which limits the
operations that can be performed on an object outside of the
object's package.

In this case, declaring serial number as a private type

prevents the user from modifying a serial number outside the

24

package Serial Number. This incorporates abstraction and
information hiding and prevents a serial number from being
inadvertently modified. The private type serial number is a
record that stores the value of the serial number and its
position in the CMR.

Once all the serial numbers are transferred to the Readin
File, an array is created. The serial numbers, along with their
original CMR position, are read into the array. Inside the array
the serial numbers are formatted for the bar code reader. This
consists of removing any blanks that might be in front of a
serial number and sorting the serial numbers in alpha-numeric
order. The formatted serial numbers are then read back into the
Readin File for download to the bar code reader.

The Create Serial Number Phase of the system resides on a
personal computer and incorporates the following packages
(objects) identified during the System Design Phase--CMR Listing,
Serial Number, Serial Number File, Bar Code Reader Input and File
Processor. The operations necessary to extract and format the
serial numbers from the CMR were implemented using Ada
programming language. A program called DOWNLOAD acts as a driver
and calls all the operations needed to create the serial number

file.

25

B. INVENTORY PHASE

The Inventory Phase was implemented using Interactive
Reader Language (IRL) and resides in the bar code reader. This
program has two major functions: conducting an inventory of the
command's serialized assets and transmitting the results of the
inventory back to a file on a personal computer.

During the Inventory Function, the user is prompted to enter
a serial number. The reader receives the serial number that is
scanned by the user and searches File A for a match. File A
contains the serial numbers extracted from the CMR during the
Create Serial Number File Phase. If the serial number scanned
matches a serial number on the CMR, the program searches File B,
the Match File, to see if the asset was already inventoried. If
the assets has not been inventoried, the serial number is saved
in File B. If the asset has already been inventoried, the serial
number is not saved and the user is asked to scan another asset.

If a serial number does not match the serial numbers
extracted from the CMR, the reader emits a warning beep and
prompts the user to enter a description and the location of the
asset. This information along with the serial number is saved in
File C, the Not Found File. The inventory portion of the program
is terminated when the user enters 'F3' instead of a serial
number.

During Transmit the user is asked which file to transmit--the

Match or Not Found File. A file is then transmitted to a

26

personal computer one serial number at a time. If the user
attempts to transmit a file that does not contain any records an
error message is displayed and the user is again prompted which
file to transmit. The Transmit portion of the program is

terminated when the user turns off the reader.

C. CREATE REPORTS PHASE

The Create Reports Phase consists of two programs--one for
the CMR Repurt and another for the Exception Report.

The program that creates the CMR Report is called CMR_RPT.
This program was implemented using Ada and resides on a personal
computer. The packages (objects) used to create this portion of
the system are: CMR Listing, Serial Number, File Processor, Bar
Code Reader Input, Serial Number File, Reader Output, and Report.
The program CMR_RPT acts as a driver and calls the operations
that reside in these packages to perform the functions needed to
convert the results of the inventory into a CMR Report.

This program opens the CMR File and copies the serial numbers
along with their CMR position into an array. The Match File is
then opened and each serial number is matched with the serial
numbers in the array. Wwhen a match is found the serial number in
the array is flagged as found--a blank space and an 'F' are
appended to the end of the serial numberf When all the serial
numbers in the Found File have been matched, the file is closed

and the array is sorted by original CMR position.

27

The CMR File is again opened and each line is copied to the
CMR Report File. If a line contains serial numbers the program
copies the serial numbers contained in the array (i.e., the
flagged serial numbers) to the CMR Report File instead of the
original serial numbers. The result is a report that is
identical to the original CMR with the serial numbers found
during the inventory marked as found.

The program that creates the Exception Report is called
X_REPORT. This program creates an Exception Report File and
formats the report for input. This consists of giving the report
a title, setting the columns in the report and giving each column
a header. The program then opens the Not Found File--a file
uploaded from the reader containing assets found during the
inventory that were not on the CMR. The serial number,
description and location of an asset are extracted from the Not
" Found File and transferred to the correct position in the
Exception Report.

The Exception Report program resides on a personal computer
and incorporates the following packages (objects) identified
during the System Design Phase--Bar Code Reader Output, Report
and File Processor. The operations necessary to create the

report were implemented using Ada programming language.

28

D. PRINRT BAR CODE LABELS

The Print Bar Code Labels Phase consists of two programs--one
for creating individual labels and another to produce a batch of
labels from the CMR listing. Both of the programs were
implemented using Ada and reside on a personal computer.

The program that generates individual labels is called
PRN_INDIV. This program acts as a driver and calls the
operations that reside in the package Labels to create bar code
labels. The application generates a screen and queries the user
to enter a serial number or "quit" to exit. If the user enters a
serial number, the application appends the necessary control
characters to the serial number and sends this data to the COM2
port of the personal computer. The Intermec Bar Code Printer
accepts the control characters and serial number and produces a
bar code label.

The program that generates a batch of bar code labels from a
CMR listing is called PRN_BATCH. This program opens the CMR and
extracts all the serial numbers into a file called Label. Once
all the serial numbers are transferred to the Label File, an
array is created. The serial numbers are then read into the
array to be formatted for the bar code printer. This consists of
removing any blanks from the front of a serial number and sorting
the serial numbers in alpha-numeric order.

The application appends the necessary contrél characters to

the serial numbers in the array. The COM2 port is then opened

29

for communication with the bar code printer. The serial numbers
with control characters are sent to the printer via the COM port.
This portion of the system incorporates the following
packages (objects) identified during the System Design Phase--CMR
Listing, Labels, Serial Numbers, Serial Number File, and File
Processor. The operations contained in these packages were used

to generate the batch bar code labels.

E. SYSTEM INTEGRATION

The four phases of the system were developed and tested
separately and then integrated into a single bar code inventory
system. The communication among the various hardware
platforms--personal computer, bar code reader, and bar code
printer--proved to be the most difficult portion of implementing
the system.

The integrated system needed to pass various files across
hardware platforms for the system to perform the functions
specified in the System Requirements. Various approaches were
tried in an attempt to establish a common protocol and initialize
the COM port--set the baud rate, parity, number of data bits and
stop bits--on the computer.

A communication driver was developed using QOBasic to
establish communication between a bar code reader and personal
computer. This driver initialized the COM port on the computer

to match the settings on the reader. The driver then appended

30

control characters to the file being transmitted which would
start and stop communication. This approach proved to be
ineffective. The communication driver failed to establish
communication between the personal computer and reader.

A commercial communication package called Crosstalk was used
to establish communication between the personal computer and
reader. This software package allows the user to establish a
direct connection with other hardware platforms. The program
initializes the COM port of the computer and allows the user to
select a protocol to establish communication. The problem with
this approach was the protocols provided in the software package
did not match the protocols in the reader. Communication between
the computer and reader was never established using this
approach.

Intermec Corporation, the manufacturer of the bar code reader
and printer, provided a software package called Interscan. This
communications package was designed to establish communication
between a personal computer and Intermec hardware. The software
initializes the COM port in the computer and the reader. During
the initial tests this program effectively established
communication between the personal computer and reader. When a
large Serial Number File, with three thousand serial numbers, was
downloaded to the reader the program failed. The package would
initiate communication but would "time out" before the entire

file could be downloaded. After further testing, it was

31

established that the problem originated from bugs in the
Interscan software.

However, the Interscan software proved to be effective
uploading the Match and Not Found Files from the reader to the
personal computer. The software furnishes special IRL commands
that allow the programmer to send the uploaded data files to
specitied files on the computer. This capability cannot be
achieved with other software applications. The Bar Code
Inventory System utilizes the Interscan application for uploading
data files from a reader to a personal computer.

Intermec Corporation provided another software package called
PCIRL. This software was designed as an IRL development system.
It allows users to create and compile IRL programs on a personal
computer. The application also provides the capability of
downloading programs and files to the reader. This package was
able to download the large Serial Number File to the reader. The
PCIRL software is utilized in the Bar Code Inventory system to
download files from the computer to a bar code reader.

When the communication problem was solved the system was
integrated into the Bar Code Inventory System. The System
Requirements specified the system must be menu driven and user
friendly. A batch file was developed to create a menu system
that would execute the necessary programs when the user selected
an option. The batch file was compiled into a .COM file to

increase the processing speed of the program. The .COM file,

32

called BCIS, controls the Bar Code Inventory System and is the

program that integrated the four phases of the system.

33

V. CONCLUSION

This thesis developed a Bar Code Inventory System (BCIS) for
Marine Corps Systems Command (MARCORSYSCOM). Ada and Interactive
Reader Language were used as the programming languages to
implement this system.

The BCIS is a fully integrated, menu-driven system that will
automate the inventory process at MARCORSYSCOM. This system
extracts the serial numbers from the command's CMR--a listing of
all assets owned by the command--and downloads them into a bar
code reader. During the inventory, the system informs the user
if the asset inventoried is not on the CMR. The system saves the
information gathered during the inventory and produces two
Reports--a CMR and an Exception Report. The system also produces
~ the bar code labels, which are attached to the command's assets.

The BCIS is fully tested and ready for implementation at
MARCORSYSCOM. The system meets all the requirements specified by
Captain Lang, the Resource Manager for the Information Systems

Management Division at MARCORSYSCOM.

34

APPENDIX A

SOURCE CODE

This appendix contains the source code used to implement the
Bar Code Inventory System. The Programs, Package Definition
Specifications, Package Definition Bodies, and batch files are

included in this section and are listed in alphabetical order.

35

rem
rem BCIS.COM
rem
rem - This program integrated the BCIS by creating a menu driven system that calls all the
rem - other programs.

rem

@ECHO OFF

rem
rem - This batch file automates the Bar Code Inventory System by creating a menu system and
rem - calling all the applications needed to perform the desired function.

rem

rem -
rem - The DRAWMAIN procedure creates the main menu for the system. The user is prompted
rem - to enter the number in front of the wanted function

rem

‘DRAWMAIN rem Procedure DRAWMAIN
CLRSCR 07

CLRSCR 401207 60 rem creates a red box
SETPOS 120 rem sets postion of cursor
DRAWBOX 4E 41 7 2 rem puts outline around box
SETPOS 4 28

TEXTOUT 4F "BAR CODE INVENTORY SYSTEM" rem outputs text to screen
CLRSCR 1F 10 15 23 64 rem creates a blue box
SETPOS 12 27

TEXTOUT IF "1. Download File to Reader” rem outputs text to screen
SETPOS 14 27

TEXTOUT IF "2. Receive Inventory Results"

SETPOS 16 27

TEXTOUT 1F "3. Print Reports"

SETPOS 18 27

TEXTOUT 1F "4. Print Bar Code Labels"

SETPOS 20 27

TEXTOUT 1F "5. Exit to DOS"

SETPOS 22 40

TEXTOUT 1F "ENTER (1..5) "

rem
rem - Procedure GETKEY uses the program BATCHKEY.COM (must be in same dir) to get the
rem - users selection and assigns the users selection to an errorlevel which is used to branch to
rem - the desired procedure

rem

36

‘GETKEY

BATCHKEY "12345"

IF ERRORLEVEL 5 GOTO END rem if user enters 5 goto end procedure

IF ERRORLEVEL 4 GOTO LABELS rem if user enters 4 goto labels procedure

IF ERRORLEVEL 3 GOTO REPORTS rem if user enters 3 goto reports procedure
IF ERRORLEVEL 2 GOTO RECEIVE rem if user enters 2 goto receive procedure
IF ERRORLEVEL 1 GOTO DOWNLOAD rem if user enters 1 goto download procedure
GOTO GETKEY rem if user enters wrong choice try again
rem

rem - Procedure DOWNLOAD changes to the Ada directory where the Ada program Download
rem - is located. Starts the program which will produce the file READIN which will be

rem - downloaded to the reader using PCIRL. This procedure copys this file to C:\PCIRL then
rem - changes to that directory and starts the application. When the user is finished downloading
rem - the is returned to the main menu

rem

:DOWNLOAD

CLRSCR 07

SETPOS 23 35

TEXTOUT 4F "EXTRATING SERIAL NUMBERS FROM CMR......"
CD\BCIS\ADA

CALL DOWNLOAD

COPY READIN C:\PCIRL >NUL
CD\PCIRL

CALL PCIRI,

CD\BCIS

GOTO DRAWMAIN

rem:
rem - The RECEIVE procedure creates the menu for the reveive portion of the system. The user
rem - is prompted to enter the number in front of the wanted function

rem

‘RECEIVE

CLRSCR 07

CLRSCR 1IF 1207 60 rem creates a blue box
SETPOS 1 20 rem sets postion of cursor
DRAWBOX 1D 41 72 rem puts outline arcund box
SETPOS 4 30

TEXTOUT 1F "RECEIVE FILE OPTIONS"

CLRSCR3F 101523 64 rem creates a cyan box
SETPOS 12 27

TEXTOUT 3F "1. Receive Found File"

SETPOS 15 27

TEXTOUT 3F "2. Receive Not Found File"

37

SETPOS 18 27

TEXTOUT 3F "3. Receive Both Files”
SETPOS 21 27

TEXTOUT 3F "4. Exit to Main Menu"
SETPOS 23 40

TEXTOUT 3F "ENTER (1.4) "

rem
rem - Procedure RECEIVEGET uses the program BATCHKEY.COM (must be in same dir) to
rem - get the users selection and assigns the users selection to an errorievel which is used to
rem - bra - h to the desired procedure

rem

‘RECEIVEGET

BATCHKEY "1234"

IF ERRORLEVEL 4 GOTO DRAWMAIN rem if user enters 4 goto labels procedure

IF ERRORLEVEL 3 GOTO BOTH rem if user enters 3 goto reports procedure

IF ERRORLEVEL 2 GOTO NOTFOUND rem if user enters 2 goto receive procedure

IF ERRORLEVEL 1 GOTO FOUND rem if user enters 1 goto download procedure
GOTO RECEIVEGET rem if wrong value entered waits for another try
rem

rem - The FOUND procedure changes to the INTRSCAN directory where the found will be

rem - uploaded from the reader. This procedure copies an existing found file to found.bak then
rem - deletes the found file. The new found file is then uploaded from the bar code reader. The
rem - file is copied to the ada directory and the program CMR_RPT is executed. When

rem - completed the user is returned to the receive menu

rem

‘FOUND

CDAINTRSCAN

COPY FOUND FOUND.BAK >NUIL

DEL FOUND >NUL

CALL INTRSCAN remn execute intrscan program
CD\BCIS

CLRSCR 07

SETPOS 23 35

TEXTOUT 4F "CREATING CMR REPORT......."

CDAINTRSCAN

COPY FOUND C:\BCIS\ADA >NUL

CD\BCIS\ADA

CALL CMR_RPT

CD\BCIS

GOTO RECEIVE rem returns to receive menu

38

rem
rem - The NOTFOUND procedure changes to the INTRSCAN directory where the NOFIND file
rem - will be uploaded from the reader. This procedure copies an existing NOFIND file to

rem - NOFIND.BAK then deletes the NOFIND file. The new NOFIND file is then uploaded
rem - from the bar code reader. The file is copied to the ada directory and the program

rem - X_REPORT is executed. When completed the user is returned to the receive menu

rem

‘NOTFOUND
CDANTRSCAN
COPY NOFIND NOFIND.BAK >NUL
DEL NOFIND >NUL
CALL INTRSCAN
CD\BCIS
CLRSCR 07
SETPOS 23 35
TEXTOUT 4F "CREATING EXCEPTION REPORT......"
CDANTRSCAN
COPY NOFIND C:\BCIS\ADA >NUL
CD\BCIS\ADA
CALL X_REPORT
CD\BCIS
GOTO RECEIVE rem returns to receive menu

rem
rem - The BOTH procedure performs the same functions as the FOUND and NOT FOUND
rem - procedures. It combines the operations of those two procedures into a single procedure
rem - for the users convenience.

rem

:BOTH

CDANTRSCAN

COPY FOUND FOUND.BAK >NUL
DEL FOUND >NUL

COPY NOFIND NOFIND.BAK >NUL
DEL NOFIND >NUL

CALL INTRSCAN

CD\BCIS

CLRSCR 07

SETPOS 23 35

TEXTOUT 4F "CREATING CMR AND EXCEPTION REPORTS......"
CDANTRSCAN

COPY FOUND C:BCIS\ADA >NUL
COPY NOFIND C:\BCIS\ADA >NUL
CD\BCIS\ADA

CALL CMR RPT

39

CALL X_REPORT
CD\BCIS
GOTO RECEIVE rem retumns to receive menu

rem
rem - The REPORTS procedure creates the menu for the reports portion of the system. The user
rem - is prompted to enter the number in front of the wanted function

rem

REPORTS

CLRSCR 07

CLRSCR 74120760 rem creates a white box
SETPOS 1 20 rem sets postion of cursor
DRAWBOX 744172 rem puts outline around box
SETPOS 4 30

TEXTOUT 74 "PRINT REPORT OPTIONS*

CLRSCR3F 10152364 rem creates a cyan box
SETPOS 12 27

TEXTOUT 3F "1. Print CMR Report”

SETPOS 15 27

TEXTOUT 3F "2. Print Exception Report”

SETPOS 18 27

TEXTOUT 3F "3. Print Both Reports”

SETPOS 21 27

TEXTOUT 3F "4. Exit to Main Menu"

SETPOS 23 40

TEXTOUT 3F "ENTER (1..4) "

rem
rem - Procedure REPORTGET uses the program BATCHKEY.COM (must be in same dir) to
rem - get the users selection and assigns the users selection to an errorlevel which is used to
rem - branch to the desired procedure

rem

‘REPORTGET

BATCHKEY "1234"

IF ERRORLEVEL 4 GOTO DRAWMAIN rem if user enters 4 goto main menu

IF ERRORLEVEL 3 GOTO BOTHRPTS rem if user enters 3 goto bothrpts procedure
IF ERRORLEVEL 2 GOTO XRPT rem if user enters 2 goto XRPT procedure
IF ERRORLEVEL 1 GOTO CMRRPT rem if user enters 1 goto CMRRPT procedure
GOTO REPORTGET rem if wrong value entered waits for another try
rem

rem - The CMRRPT procedure displays a message on the screen that the CMR REPORT is
rem - printing. The procedure changes to the directory where REPORT is located and sends the

rem - report to the printer. When finished the procedure returns the user to the reports menu.
rem

40

:CMRRPT

CLRSCR 07

SETPOS 22 38

TEXTOUT 4F "PRESS ENTER......"
SETPOS 23 35

TEXTOUT 4F "PRINING CMR REPORT......"
SETPOS 40 1

CD\BCIS\ADA

PRINT REPORT

CD\BCIS

GOTO REPORTS

rem
rem - The XRPT procedure displays a message on the screen that the XREPORT is printing.
rem - The procedure changes to the directory where XREPORT is located and send the report to
rem - the printer. When finished the procedure returns the user to the reports menu.

rem

XRPT

CLRSCR 07

SETPOS 22 42

TEXTOUT 4F "PRESS ENTER......"
SETPOS 23 35

TEXTOUT 4F "PRINTI{G EXCEPTION REPORT......"
SETPOS 40 1

CD\BCIS\ADA

PRINT XREPORT

CD\BCIS

GOTO REPORTS

gi it

rem - The procedure BOTHRPTS prints both the CMR REPORT and the XREPORT. It

rem - performs the same operations as the above two procedures and is included for user

rem - comvenience.

rem
:BOTHRPTS

CLRSCR 07

SETPOS 22 46

TEXTOUT 4F "PRESS ENTER......"

SETPOS 23 35

TEXTOUT 4F "PRINTING CMR AND EXCEPTION REPORTS...... "

SETPOS 40 1 :

CD\BCIS\ADA

PRINT REPORT XREPORT

CD\BCIS

GOTO REPORTS

41

rem
rem - The LABELS procedure creates the menu for printing bar code labels. The user is
rem - prompted to enter the number in front of the wanted function

rem

‘LABELS

CLRSCR 07

CLRSCR 4F 120760 rem creates a red box
SETPOS 1 20 rem sets postion of cursor
DRAWBOX 4041 72 rem puts outline around box
SETPOS 4 26

TEXTOUT 4F "PRINT BAR CODE LABEL OPTIONS"
CLRSCR3F 11152364 rem creates a cyan box
SETPOS 14 27

TEXTOUT 3F "1. Print Batch Labels"

SETPOS 17 27

TEXTOUT 3F "2. Print Individual Labels"

SETPOS 20 27

TEXTOUT 3F "3. Exit to Main Menu"

SETPOS 23 40

TEXTOUT 3F "ENTER (1..3) "

rem
rem - Procedure LABELGET uses the program BATCHKEY.COM (must be in same dir) to get
rem - the users selection and assigns the users selection to an errorlevel which is used to branch
rem - to the desired procedure

rem
‘LABELGET

BATCHKEY "123"

IF ERRORLEVEL 3 GOTO DRAWMAIN rem if user enters 4 goto main menu

IF ERRORLEVEL 2 GOTO INDIV rem if user enters 2 goto INDIV procedure

IF ERRORLEVEL 1 GOTO BATCH rem if user enters 1 goto BATCH procedure
GOTO LABELGET rem if wrong value entered waits for another try

rem

rem - The procedure BATCH initializes COM2 for communication with the bar code printer. The
rem - procedure moves to the directory where PRN_BATCH is located and executed the

rem - program. The user is then returned to thelabels menu.

rem

BATCH

MODE COM2: BAUD=96 PARITY=E DATA=7 STOP=1 >NUL
CLRSCR 07

SETPOS 23 35

TEXTOUT 4F "PRINTING BAR CODE LABELS......"

42

SETPOS 40 1
CD\BCIS\ADA
CALL PRN_BATC
CD\BCIS

GOTO LABELS

rem
rem - The procedure INDIV initializes COM2 for communication with the bar code printer. The
rem - procedure moves to the directoru where PRN_INDI located and executes the program.
The

rem - user can then print as many bar code labels as he needs. The user is then returned to the
rem - labels menu.

rem

INDIV

MODE COM2: BAUD=96 PARITY=E DATA=7 STOP=1 >NUL
CD\BCIS\ADA

CALL PRN_INDI

CD\BCIS

GOTO LABELS

rem
rem - The end procedure exits the user from the batch file and clears the screen. This is the end

rem - of the program
rem

‘END
CLRSCR 07
SETPOS 10
CA\

43

: CMR LISTING package definition specifications

: Richard Hancock

: 28 July 1993

: This package contains all operations associated with the object CMRL,

: which stands for CMR Listing. This object: is an ASCII file containing a
: listing of all assets a responsible officer is accountable for. The format of
: the CMR is fixed. This package contains operations that will OPEN,

: CLOSE, and RESET the file. It also contains operations that will search
: the CMR and pull out all the serial numbers or search the CMR and get
: each line. A Detailed description of each of the operations is provided in
: the package body.

with SERIAL._NUMBERS; use SERIAL_NUMBERS;

package CMRL is

procedure OPEN (NAME : in STRING);
procedure RESET (NAME : in STRING);
procedure CLOSE (NAME : in STRING);

procedure GET_SN (SN : out SERIAL_NUMBER);
procedure GET_LINE (LINE : out STRING; LAST : out NATURAL);

function ENDOF_FILE return BOOLEAN;

OPEN_ERROR : exception;
RESET_ERROR : exception;
CLOSE_ERROR : exception;

end CMRL;

-- TITLE
- NAME
- DATE
-- DESCRIPTION

-
-—
-
-

: CMR LISTING package definition body

: Richard Hancock

: 28 July 1993

: This package contains all operations associated with the object CMRL,

: which stands for CMR Listing. This object is an ASCII file containing a
: listing of all assets a responsible officer is accountable for. The format of
: the CMR is fixed. This package contains operations that will OPEN,

: CLOSE, and RESET the file. It also contains operations that will search
: the CMR and pull out all theserial numbers or search the CMR and get

: each line. A Detailed description of each of the operations is provided in
: the package body.

with TEXT_I1O; use TEXT_IO;

package body CMRL is
CMRL_FILE : FILE_TYPE;
MORE_SERIAL_NUMBERS : BOOLEAN = false;
LAST_LINE_HAD_SERNRS : BOOLEAN = false;

SN_COUNT
END_OF_FILE

:INTEGER;
: BOOLEAN == false;

PROCEDURE OPEN

-~ This procedure opens the CMRL file. The name of the file to be opened is passed to this
-- procedure from the calling procedure. This procedure sets the default input to be the CMRL

- file.

procedure OPEN (NAME : in STRING) is

begin

TEXT_10.OPEN (CMRL_FILE, IN_FILE, NAME);
TEXT_IO.SET_INPUT (CMRIL._FILE);

exception

when others =>

raise OPEN_ERROR;

end OPEN;

45

PROCEDURE RESET
— This procedure assumes the same file name is passed as when the CMRL file was opened. It
-- resets the file so that reading from its elements can be restarted from the beginning (Le., resets
-- the pointer to the beginning of the file). Sets the file as the current input file and resets the

-- End-of-File Flag.

procedure RESET (NAME : in STRING) is

begin
TEXT_IO.RESET (CMRI._FILE, IN_FILE);
TEXT_IO.SET_INPUT (CMRL_FILE);
END_OF_FILE = false;

exception
when others =>
raise RESET_ERROR;

end RESET;

PROCEDURE CLOSE
- This procedure closes the CMRL file and the default input is set to standard (i.e., keyboard).

procedure CLOSE (NAME : in STRING) is

begin
CLOSE (CMRL_FILE);
TEXT_IO.SET_INPUT (TEXT_IO.STANDARD_INPUT);

exception
when others =>
raise CLOSE_ERROR,;

end CLOSE;

PROCEDURE GET_SN

This procedure reads in the 1irst 18 characters of each line of the CMRL file. If the line has a
serial number, it reads the serial number into a 22 character field and converts the type string
to type serial number (private type) without changing the value. This serial number type is
passed back to the calling procedure. This procedure continues to read in and process serial
numbers until the end of line. Then it skips to the next line and continues to search for serial
numbers until the end of file.

procedure GET_SN (SN : out SERIAL_NUMBER) is

SER_NR : STRING (1..22);
HEADER : STRING (1..18);
JUNK_CHAR : CHARACTER;
COLUMN : TEXT_10.count;

LINE : TEXT_1O.coumt,;
begin
if not MORE_SERIAL_NUMBERS then -- have a new line
SN_COUNT = 0; -- set serial number count to 0.
loop

TEXT_IO.get (CMRL_FILE, HEADER); -- get first 18 chars in line
exit when HEADER = " SER NRS:";
exit when LAST_LINE_HAD_SERNRS AND HEADER =" ".

LAST LINE_HAD_SERNRS := false; -- if line just read in had no serial
TEXT_IO.skip_line (CMRL_FILE); numbers then reset flag
end loop;
LAST_LINE_HAD_SERNRS = true; -- now have a line with serial #'s
end if; -- 0 next time around this state
-- will be true.
if SN_COUNT > 1 then
get (CMRL_FILE, JUNK_CHAR); - special case where serial #'s in
end if; -columns 3-5 have 23 vice 22 chars
for CHAR in 1..22 loop -- read the sn in to a 22 char field
get (CMRL_FILE, SER_NR(CHAR));
end loop;
SN_COUNT :=SN_COUNT + 1; -~ increment our count
if not TEXT_IO.END_OF_LINE then -- if we haven't reached the end of
MORE_SERIAL_NUMBERS = TRUE; -- the line then we have more sn's
else -- other wise we don't.

MORE_SERIAL._NUMBERS = FALSE;
skip_line (CMRL_FILE),
end if;
SERIAL_NUMBERS.CREATE (SER_NR, SN); -- create a sh record(private type)

47

exception
when TEXT_IO.END_ERROR =>
END_OF_FILE = true;
when CONSTRAINT_ERROR =>
TEXT_IO.PUT_LINE (STANDARD_OUTPUT, "-CONSTRAINT_ERROR raised
reading in from CMRL. --");
when others =>
TEXT_IO.PUT_LINE (STANDARD_OUTPUT, "-CONSTRAINT_ERROR raised
reading in from CMRL --");
end GET_SN;

PROCEDURE GET_LINE
-- This procedure reads a full line from the CMRL into a 150 char string and returns the string
—~ and the position of the last char in the line.

procedure GET _LINE (LINE : out STRING; LAST : out NATURAL) is

begin
TEXT_10.GET_LINE (CMRL_FILE, LINE, LAST); -- get the full line
exception
when TEXT_IO.END_ERROR =>
END_OF_FILE = true;
when CONSTRAINT_ERROR =>
TEXT_IO.PUT_LINE (STANDARD_OUTPUT, "- CONSTRAINT_ERROR
raised reading in from CMRL --"),
when others =>
TEXT_10.PUT_LINE (STANDARD_OUTPUT, "—-CONSTRAINT ERROR raised
reading in from CMRL --");
end GET_LINE;

FUNCTION ENDOF_FILE
-- This function returns the value of the End-of-File flag. The flag is initially set to false but is
-- changed to true when an END_OF_FILE exception is raised in either the GET_SN or

-- GET_LINE procedures.

function ENDOF _FILE return BOOLEAN is

begin
returmn END_OF_FILE;
end ENDOF_FILE;

end CMRL;

48

-~ TITLE
-- NAME
- DATE
-- DESCRIPTION

: CMR REPORT

: Richard M. Hancock

: 08 Aug 1993

: This procedure is the main driver for the Report portion of the Bar Code

: Inventory System. This Part of the system opens the found file which as
: was uploaded to the computer upon completion of the imventory. This

: procedure formats the serial numbers (appends blanks to the front of each
: serial number to retum them to 22 character fields). The serial numbers

: are flaged as found (ie a space and an F is appended to the serial number
: to identify which serial numbers were found during the inventory). The

: serial numbers are then sorted, ie returned to their original order when

: extracted from the CMRL. The CMRL is then opened and each line is

: copied to a File called REPORT. When a line is extracted from the

: CMRL it is searched for serial numbers, if serial numbers are found they
: are replaced with the serial numbers that have been flaged, thus

: producing a final report in CMR format of which serial numbers were

: found during the inventory. The system was designed using the object

: oriented approach and each package is an object that was identifed during
: the design phase. All operations concerining a particular object will be

: found in that Package. The Packages used in this portion of the system

: are CMRL, READER_INPUT, READER_OUTPUT,

: SERIAL_NUMBERS, SN_ARRAY, FILE_PROCESSOR and REPORT

with CMRI1.; with READER_INPUT; with READER_OUTPUT, with REPORT;
with SERIAL_NUMBERS; use SERIAL_NUMBERS;

with SN_ARRAY; use SN_ARRAY;

with FILE_PROCESSOR,; use FILE_PROCESSOR;

with TEXT_IO; use TEXT_IO;

procedure CMR_RPT is

CMRI._FI1.LE. NAME : STRING (1..4) = "CMRL";
REPORT_FILE_NAME : STRING (1..6) == "REPORT";
READER_INPUT_FILE_NAME : STRING (1..6) = "READIN",
READER_OUTPUT_FILE_NAME : STRING (1..5) = "FOUND";

SN
SN_COUNT
ARR_PTR

begin

: SERIAL_NUMBER;
: INTEGER := 0;
: ARRAY_POINTER;

CMRL.OPEN (CMRL_FILE_NAME);
READER INPUT.CREATE (READER_INPUT_FILE_NAME);

49

loop
CMRL.GET_SN (SN);

exit when CMRL.ENDOF _FILE;

SN_COUNT = SN_COUNT + 1;

READER_INPUT.ADD_SN (SN);
end loop;
CMRL.RESET (CMRL_FILE_NAME);
READER_INPUT.CLOSE_OUTPUT (READER_INPUT_FILE_NAME);
SN_ARRAY.CREATE_ARRAY (SN_COUNT, ARR_PTR);
FORMAT_SERNR_FILE (SN_COUNT, READER_INPUT _FILE_NAME, ARR_PTR);
FORMAT_CMR_REPORT_FILE (SN_COUNT, READER_OUTPUT_FILE_NAME,

REPORT_FILE_NAME, ARR_PTR);

CMRL.CLOSE (CMRL_FILE_NAME);

eXception

when CMRL.OPEN_ERROR =>

TEXT_IO.PUT_LINE (STANDARD_OUTPUT, "Error OPENING file CMRL");
when CMRL.RESET_ERROR =>

TEXT_IO.PUT_LINE (STANDARD_OUTPUT, "Error RESETTING file CMRL");
when CMRL.CLOSE_ERROR =>

TEXT.10.PUT_LINE (STANDARD_OUTPUT, "Error CLOSING file CMRL");

when READER_INPUT.CREATE_ERROR =>

TEXT_IO.PUT_LINE (STANDARD_OUTPUT, "Emror CREATING file READIN");
when READER_INPUT.OPEN_ERROR =>

TEXT_IO.PUT_LINE (STANDARD_OUTPUT, "Error OPENING file READIN");
when READER_INPUT.CLOSE_ERROR =>

TEXT_IO.PUT_LINE (STANDARD_OUTPUT, "Error CLOSING file READIN");

when READER_OUTPUT.OPEN_ERROR =>

TEXT_IO.PUT_LINE (STANDARD_OUTPUT, "Error OPENING file FOUND.DAT");
when READER_OUTPUT.CLOSE_ERROR =>

TEXT_10.PUT_LINE (STANDARD_OUTPUT, "Error CLOSING file FOUND.DAT");

when REPORT.CREATE_ERROR =>
TEXT_IO.PUT_LINE (STANDARD_OUTPUT, "Error CREATING file REPORT");

when REPORT.CLOSE_ERROR =>
TEXT_IO0.PUT_LINE (STANDARD_OUTPUT, "Error CLOSING file REPORT");

end CMR_RPT;

50

-TITLE : Download

- NAME : Richard M. Hancock

- DATE : 05 Aug 1993

— DESCRIPTION : This procedure is the main driver the for download portion of the Bar

: Code Inventory System. This part of the system opens the CMRL file

: (ASCII file) provided by the user and extracts all the serial numbers into
: a Readin file. These serial numbers are then formatted (any blanks at the
: front of the serial numbers are removed) and the file is sorted into

: alpha-numeric ascending order prior to download to the bar code reader.

: This portion of the system is necessary before the actual inveatory is

: conducted. The system was designed using the object oriented approach
: and each package is an object that was identified during the design phase.
: All operations concerning any object may be found in that Package. The
: Packages used with this portion of the system are CMRL,

: READER_INPUT, SERIAL_NUMBERS, SN_ARRAY, and

: FILE_PROCESSOR.

with CMRL; with READER_INPUT;

with SERIAL_NUMBERS; use SERIAL_NUMBERS;
with SN_ARRAY; use SN_ARRAY;

with FILE_PROCESSOR; use FILE_PROCESSOR,
with TEXT_IO; use TEXT_I10:

procedure DOWNLOAD is

CMRL_FILE_NAME : STRING (1..4) ="CMRL";

READER_INPUT_FILE_NAME : STRING (1..6) == "READIN";

SN : SERIAL_NUMBER;
SN_COUNT :INTEGER = 0;
ARR_PTR : ARRAY_POINTER;

begin
CMRL.OPEN (CMRL_FILE_NAME);
READER_INPUT.CREATE (READER_INPUT_FILE_NAME);
loop
CMRL.GET_SN (SN);
exit when CMRL.ENDOF_FILE,;
SN_COUNT = SN_COUNT +1;
READER_INPUT.ADD_SN (SN);
end loop;
CMRL.CLOSE(CMRL_FILE_NAME);

READER_INPUT.CLOSE_OUTPUT (READER_INPUT_FILE_NAME);

SN_ARRAY.CREATE_ARRAY (SN_COUNT, ARR_PTR),
51

FORMAT_SERNR_FILE (SN_COUNT, READER_INPUT_FILE_NAME, ARR_PTR);

exception
when CMRL.OPEN_ERROR =>
TEXT_IO.PUT_LINE (STANDARD_OUTPUT, "Emror OPENING file CMRL");
when CMRL.CLOSE_ERROR =>
TEXT_IO.PUT_LINE (STANDARD_OUTPUT, "Error CLOSING file CMRL");

when READER_INPUT.CREATE_ERROR =>

TEXT_IO.PUT_LINE (STANDARD_OUTPUT, "Ermror CREATING file READIN");
when READER_INPUT.OPEN_ERROR =>

TEXT_IO.PUT_LINE (STANDARD_OUTPUT, "Emror OPENING file READIN"),
when READER _INPUT.CLOSE_ERROR =>

TEXT_IO.PUT_LINE (STANDARD_OUTPUT, "Error CLOSING file READIN"),

end DOWNLOAD;

52

-- TITLE : Exception Report

- NAME : Richard M. Hancock

-- DATE : 11 Aug 1993

-- DESCRIPTION : This procedure is the main driver the for uploading the NoFind file from
- : the bar code reader. This procedure creates an Exception Report file and
- : and opens the NoFind file. Formats the report by giving the report a title
- : and column headings. The procedure then gets the serial number,

- : description and location of the asset not on the CMR and puts it in the
- : report, under the appropriate heading. This is continued until the end of
-- : file flag is raised for the NoFind file. The Packages used with this portion
- : of the system are CMRL, READER_INPUT, SERIAL,_NUMBERS,

- : SN_ARRAY, and FILE_PROCESSOR.

with READER_OUTPUT; with REPORT;
with FILE_PROCESSOR; use FILE_PROCESSOR;
with TEXT 10; use TEXT 10;

procedure X_REPORT is

REPORT_FILE : FILE_TYPE;
REPORT_FILE_NAME : STRING (1..7) = "XREPORT";
READER _OUTPUT_FILE_NAME :STRING (1..6) = "NOFIND";

begin
CREATE (REPORT_FILE, OUT_FILE, REPORT_FILE_NAME);
SET_OUTPUT (REPORT_FILE);
FORMAT_EXCEPTION _ILE (READER_OUTPUT_FILE_NAME, REPORT_FILE);
CLOSE (REPORT_FILE);

exception

when READER_OUTPUT.OPEN_ERROR =>
TEXT_IO.PUT_LINE (STANDARD_OUTPUT, "Error OPENING file NOFIND");

when READER_OUTPUT.CLOSE_ERROR =>
TEXT_IO.PUT_LINE (STANDARD_OUTPUT, "Error CLOSING file NOFIND");

end X_REPORT;

53

~TITLE

- NAME

-- DATE

- DESCRIPTION

: FILE PROCESSOR definition package specifications

: Richard Hancock

: 17 July 1993

: This package contains all operations associated with the object FILE

: PROCESSOR. The operations are necessary to format the files that will
: be passed between different hardware platforms. The Package performs
: operations on files such as removing any blank spaces from serial

: numbers before they are passed to the bar code reader and after the

: inventory is completed the serial numbers that found are flaged and

: returned to their origninal length of 22 characters. A detailed description
: of each of the operations is provided in the package body.

with SN_ARRAY; use SN_ARRAY;
with TEXT _IO; use TEXT_IO;

package FILE_PROCESSOR is

REPORT_FILE : FILE_TYPE;

procedure FORMAT_SERNR_FILE (SN_COUNT :in INTEGER,;

SERNR_FILE : in STRING;
ARR PTR :in ARRAY_POINTER);

procedure FORMAT. CMR_REPORT_FILE (SN_COUNT : in INTEGER;

SOURCE_FILE : in STRING;
DEST_FILE :in STRING;
ARR_PTR :in ARRAY_POINTER);

procedure FORMAT_EXCEPTION_FILE (SOURCE_FILE : in STRING;

REPORT_FILE : in FILE_TYPE);

procedure FORMAT_LABELS_FILE (SN_COUNT :in INTEGER;

LABEL_FILE : i STRING;
PRINT_FILE : in STRING;
ARR_PTR :in ARRAY_POINTER);

end FILE_PROCESSOR;

54

-TITLE
- NAME
- DATE

-- DESCRIPTION

: FILE PROCESSOR definition package body

: Richard Hancock

: 17 July 1993

: This package contains all operations associated with the object FILE

: PROCESSOR. The operations are necessary to format the files that will
: be passed between different hardware platforms. The Package performs
: operations on files such as removing any blank spaces from serial

: numbers before they are passed to the bar code reader and after the

: inventory is completed the serial numbers that found are flagged and

: returned to their original length of 22 characters. A detailed description
: of each of the operations is provided in the package body.

with SERIAL._NUMBERS; use SERIAL._NUMBERS;
with TEXT_IO; use TEXT_IO;

with READER_INPUT; with READER_OUTPUT,;
with REPORT; with CMRL; with LABELS:

package body FILE_PROCESSOR is

PROCEDURE FORMAT_SERNR_FILE

-- This procedure opens the file READIN, which contains the serial numbers extracted from
the CMR and formats this file for the bar code reader. The serial numbers in the file are 22
characters long, this procedure reads each serial number into an array and removes any blank
spaces in front of the serial number. The array is sorted in alpha-numeric order and then read
back to the original file called READIN. This file is then going to be downloaded to the bar

code reader.

procedure FORMAT_ SERNR_FILE (SN_COUNT :in INTEGER;

SERNR_FILE :in STRING;
ARR_PTR :in ARRAY_POINTER) is

VALUE :STRING (1..22);
INDEX :INTEGER =0;
SN : SERIAL_NUMBER;
begin
READER_INPUT.OPEN_INPUT (SERNR_FILE), -- open sn file
for I m 1..SN_COUNT loop -- for the number
READER_INPUT.GET_SN (SN); - -of serial nums
SN_ARRAY.INSERT_SN (I,SN,ARR_PTR); — get one and place
end loop; — it in the sn array
READER_INPUT.CLOSE_INPUT (SERNR_FILE); -close the file to input

READER_INPUT.OPEN._OUTPUT (SERNR_FILE); -- reopen it for output

55

SN_ARRAY.SORT_BY_VALUE (SN_COUNT,ARR_PTR); -- sort sn's

for I in 1..SN_COUNT loop
VALUE = SERIAL_NUMBERS.VALUE (SN_ARRAY.REMOVE_SN(I,ARR_PTR));

for J in 1..22 loop
if VALUE(J..J) /=" " then - for each sn in the
INDEX =J; - amray, get its value
exit; — remove any blanks
end if; - and output it to the
end loop; - bar code reader input file
READER_INPUT.ADD_SN (VALUE (INDEX..22));
end loop;
READER_INPUT.ADD_SN ("*"); — tell reader EOF

READER_INPUT.CLOSE_OUTPUT (SERNR_FILE); - close the file

end FORMAT_SERNR_FILE;

PROCEDURE FORMAT_CMR_REPORT_FILE
- This procedure opens the file FOUND, which contains the serial numbers found during the

- inventory that were on the CMR. The serial numbers are read from the FOUND file and the
-- array is searched for a match. The serial numbers in the array are the serial numbers

- extracted from the CMR and were placed in the array when procedure

— FORMAT_SERNR_FILE was called. When the serial number in the array is matched with a
-- serial number in the found file the serial number in the array is flagged as found. The serial
— number is appended with a blank and an 'F’. The serial numbers in the array are then sorted
- back to their original CMR position. A file called REPORT is created and the CMR file is

— opened. Each line of the CMR is copied to the REPORT file. If a line in the CMR contains
-- any serial numbers the serial numbers in the array are written to the report file instead of the
-- serial numbers in the CMR. This creates a report that is the same format as the CMR except
-- the serial numbers that were found during the inventory are flagged as found.

procedure FORMAT_CMR_REPORT_FILE (SN_COUNT :in INTEGER;
SOURCE_FILE : in STRING;
DEST_FILE :in STRING;
ARR _PTR :in ARRAY_POINTER) is

INDEX :INTEGER = 0;

SN : SERIAL_NUMBER;
SN_STR :STRING (1..22);
IN_LINE :STRING (1..150);
LAST :NATURAL;

56

begin
READER_OUTPUT.OPEN (SOURCE_FILE); -- open the bar code reader
REPORT.CREATE (DEST_FILE); — output file, create the
loop — cmrl report file
SN_STR =" "
READER_OUTPUT.GET_SN (SN_STR); - for every sn in the
exit when READER_OUTPUT.ENDOF_FILE; -- file, get it and mark

SN_ARRAY.MARK_SN_FOUND (SN_STR,ARR_PTR); - it found
end loop;

SN_ARRAY.SORT_BY_KEY (SN_COUNT, ARR_PTR); — sort the array of sn's
-- back to original order
INDEX =1;
loop — get each line in the original
CMRL.GET _LINE (IN_LINE, LAST); - cmrl
exit when CMRL.ENDOF _FILE;
if IN_LINE (1..18) /=" " then
while IN_LINE (1..18) /=" SER NRS:" loop
REPORT.ADD_LINE (IN_LINE (1..LAST)): - if the line doesn't
CMRL.GET_LINE (IN_LINE, LAST); -- have any sn's then get
end loop; -- the next line until EOF
end if;

SN := SN_ARRAY.REMOVE_SN (INDEX, ARR_PTR),

- want to take the line input from the original cmrl and reinsert serial numbers from
-- the array and then output the reconstructed line to the cmrl report file

IN_LINE (19..40) := SERIAL_NUMBERS.VALUE (SN), -- insert 1st sn
if LAST >= 62 then -- insert 2nd sn
INDEX = INDEX + 1;
IN_LINE(41..62):=
SERIAL_NUMBERS.VALUE(SN_ARRAY.REMOVE_SN(INDEX,
ARR_PTR));
end if:
if LAST >= 85 then -- insert 3rd sn
INDEX = INDEX + 1;

IN_LINE(64..85):=SERIAL_NUMBERS.VALUE(SN_ARRAY.REMOVE_SN(INDEX,
ARR_PTR));

end if;

if LAST >= 108 then - insert 4th sn
INDEX = INDEX + 1;
IN_LINE(87..108):=SERIAL._NUMBERS.VALUE(SN_ARRAY.REMOVE_SN

(INDEX, ARR_PTR));

end if;

if LAST = 131 then -- insert 5th sn
INDEX = INDEX + 1;

57

IN_LINE(110..131):= SERIAL_NUMBERS.VALUE(SN_ARRAY.REMOVE_SN
(INDEX, ARR_PTR));

end if;
INDEX = INDEX + 1; — add reconstructed line
REPORT.ADD_LINE (IN_LINE(1..LAST)); to the cmrl report
end loop;
READER_OUTPUT.CLOSE (SOURCE_FILE); close the files

REPORT.CLOSE (DEST_FILE);
end FORMAT_CMR_REPORT_FILE;

PROCEDURE FORMAT_EXCEPTION_FILE
-- This procedure formats the serial numbers that were not on the CMR but were found during
the inventory into an exception report. During the inventory the user is notified when an asset
is not on the CMR. He is instructed to enter a description of the asset and its location . This
- information will be recorded in the exception report.

procedure FORMAT_EXCEPTION_FILE (SOURCE_FILE : in STRING;
REPORT_FILE : in FILE_TYPE) is

SN_STR : STRING (1..22);
ASSET_DESCRIPTION : STRING (1..30);
ASSET_LOCATION : STRING (1..18);
LAST : NATURAL,;

begin
REPORT.FORMAT_EXCEPTION_REPORT;
READER_OUTPUT.OPEN (SOURCE_FILE);

" loop
exit when READER _ OUTPUT ENDOF_FILE;
SN_STR ="
ASSET_DESCRIPTION = " "
ASSET_LOCATION =" "

READER_OUTPUT.GET_SN (SN._ S’I‘R)
TEXT_IO.SET_COL(REPORT_FILE, 1);
TEXT_IO.PUT(SN_STR);
READER_OUTPUT.GET_DESCRIPTION(ASSET_DESCRIPTION);
TEXT_IO.SET_COL(REPORT_FILE, 28);
TEXT_IO.PUT(ASSET_DESCRIPTION);
READER_OUTPUT.GFT_LOCATION(ASSET_LOCATION);
TEXT_IO.SET_COL(" .ORT_FILE, 62);
TEXT_IO.PUT_LINE(ASSET_LOCATION);

end loop;

READER_OUTPUT.CLOSE (SOURCE_FILE);

end FORMAT_EXCEPTION_FILE;

PROCEDURE FORMAT_LABELS_FILE
This procedure opens the file LABELS, which contains the serial numbers extracted from the

-- CMR and formats this file for printing bar code labels. The serial numbers in the file are 22

-- characters long, this procedure reads each serial number into an array and removes any blank
-- spaces in front of the serial number. The array is sorted in alpha-numeric order and then the

-- serial numbers are appended with the necessary control characters for communication with the
-- bar code printer. The serial numbers with the control characters are then written to COM2 port
— for printing.

procedure FORMAT_LABELS_FILE (SN_COUNT :in INTEGER;
LABEL_FILE :in STRING;
PRINT_FILE :in STRING;

ARR_PTR :in ARRAY_POINTER) is
VALUE :STRING (1..22);
INDEX :INTEGER = 0;
LENGTH :INTEGER = 0;
SN : SERIAL_NUMBER;
begin
LABELS.OPEN_INPUT (LABEL _FILE); -- open sn file
for I in 1..SN_COUNT loop -- for the number
LABELS.GET_SN (SN): -- of serial nums
SN_ARRAY.INSERT_SN (I,SN,ARR_PTR): -- get one and place
end loop; -- it in the sn array
LLABELS.CLOSE_INPUT (LABEL _FILE); -- close the file to input
LABELS.CREATE (PRINT _FILE); -- open com?2 for output

SN_ARRAY.SORT_BY_VALUE (SN_COUNT,ARR_PTR); -- sort sn's

for1in 1..SN_COUNT loop
VALUE = SERIAL_NUMBERS . VALUE (SN_ARRAY.REMOVE_SN(I.ARR_PTR)):
for Jin 1..22 loop

if VALUE(J..J) /=" " then -- for each sn in the
INDEX =], -- array, get its value
LENGTH := 23 - INDEX; -- get length of each sn
exit; -- remove any blanks
end if; -- and output it to the
end loop; -- com?2 port
LABELS.PRINT_LABEL (VALUE (INDEX..22), LENGTH);
end loop;
LABELS.CLOSE_OUTPUT (PRINT_FILE); -- close com?2 port

end FORMAT_LABELS_FILE;

end FILE_PROCESSOR,;

59

: INVENTORY PORTION OF SYSTEM

R I AL EZZZ XA AR R RS AR R 2 X2 R AR 2 AR R XX 2 R d iR d X2 R XAid X XAt 2 R X4
.

This program is designed to be used by Marine Corps Systems

: Command in conducting inventory of its serialized assets. This

: portion of the system is written using IRL and will reside in
the bar code reader. This program has two major functions:
conducting the inventory and transmitting the results back to a
computer. During the inventory portion, the user is prompted to
enter a serial number or F3 to transmit. The user should
continue to enter serial numbers until the inventory is
complete. The inventory takes a serial number , and performs a

: search of the serial number file (FILE A). This file contains

: all the serial numbers found on the CMR Listing. If the serial
number scanned is is on the CMR (in FILE A), the program jumps
to a procedure called CHKDUP. This procedure then checks the
found file to see if the asset just scanned has already been

: inventoried. 1If the asset has not already been inventoried the

: program jumps to the FOUND procedure, where the serial number

: is recorded in the found file (FILE B). If the asset has

: already been inventoried the program jumps back to the INV
procedure and the user is asked to enter another serial number.
If the serial number scanned does not match any of the serial
numbers in FILE A, the user receives a warning beep and is
instructed to enter the description and location of the asset.
This data is then recorded in the not found file (FILE C). When
the user selects transmit data he is promted whether he wants
to transmit the found file or the not found file. The reader
then assigns the name the file will be transmitted to on
the computer using IRL commands specially created to interact

: with intrscan software. The files are then uploaded to the

: computer.
:**

SPECIFICATION DEFINITION SECTION

0A(4000,23) : Open file A for 4000 records, 23 char per
: record. File will contain serial #'s
: downloaded from CMR.

OB(4000,23) : Open file B for 4000 records, 23 char per
: record. File will contain the serial# of
: assets scanned that matched the CMR.

0C(100,128) : Open file C for 100 records, 128 char per
: record. File contains the serial #,
: description, and location of assets that
: were not on the CMR.

P" MARCORSYSCOM" : Displayed on screen when program is
P" INVENTORY" : initiated.
W3 : Wait 3 seconds

60

 en e e v D e = - - — Y T S e - D S MR W A P W M TP e e WP R WS S e W e W W e e e = W e e m e

BAAEAAAAAAERRA SRRt SRR AR RRRRRRRRRARRRR2RRR22 2R 2R Rt NE

The INV routine commences the actual inventory portion of the
program. It prompts the user to enter a serial # or F3 to

transmit files after the inventory is completed.
:******t**ﬁ***t***********************************t************

.INV : INV routine
D$O="" : Clear input register 0
P "\e[2J" : Clear screen on reader

P"ENTER SERIAL # OR"
P*F3 TO TRANSMIT*

P'\r" ;: Carriage return
A : Get ASCII input
G$0="F3* . XMIT : Goto XMIT routine if F3 is entered

KA R KA AN KA R KRR R RN RIRA A AR AR AR AR TR AR AA KR RN AR AR RRARRRNRRNRN AR AR K

SEARCH 1is a routine designed to perform a search of File A
to see if the serial # of the asset inventoried is on the CMR.
The routine calls two other routines (CHKDUP and NOFIND).

R RE KRR AR R AR A AR AR AR AR R A RRR AN R AR KRA AR AR AAN IR AR AR AN N ARk dr i

.SEARCH : SEARCH ROUTINE
H#9=A : Puts the location number of the last
: record in File A into register #9.
LASO#8 : Searches file A for a serial number that

: matches the serial number is string
register $0. It then places the location
of the match in register #8. If there is
not a match it places the location number
of the last serial number in the file
: plus one into register #8.
G#8<=#9 .CHKDUP : Goto CHKDUP routine if the location

: number in register 8 is less than or

: equal to the location # in register 9.
G#8>#9 .NOFIND : Goto routine NOTFOUND if the location

: number found in register 8 1s greater
than the number of records in the file.

61

XTI EIIZIEEZEIIEIEERIZAZARSERRRRR SRR R R R R Rl R R Rt RS 2
.

The CHKDUP routine is called from the SEARCH routine. This
routine searches the found file to make sure the asset just
scanned hasn't already been inventoried. 1If the asset has not
already been inventoried the program jumps to the FOUND
routine. If the asset has already been inventoried the program

returns to the INV routine.
:***t************t*******

.CHKDUP : CHKDUP ROUTINE
H#7=B : Puts the location number of the last
: record in File B into register #7.
LBSO#6 : Searches file B for a serial number that

matches the serial number is string
register $0. It then places the location
of the match in register #6. If there is
not a match it places the location number
of the last serial number in the file
: plus one into register #6.
G#6<=#7.INV : Goto INV routine if the location number
: in register 6 is less than or equal to
the location # in register 7. (If the
: asset has alreadv been inventoried).
G#6>#7 . FOUND : Goto routine FOUND i: +the location
: number found in register ¢ is greater
than the number cf records in the file.
The asset has not already been
inventoried.

TR AR R R AR R R AR KA R R AR AR AR R AR R AR R A KA AR A RARAR A AN AR A XA AR AR AN

FOUND routine is called from .chkdup and 1s initiated when
the serial # scanned is found in FILE A. This routine saves the
serial number in the found file (FILE B) and returns to the INV

routine.
:**

. FOUND : FOUND ROUTINE
RB : Puts the serial number scanned into file
B which is the matched file and clears
: string register 0.
G.INV : Goto INV routine, this forms a loop
: taking you back to the beginning of
the program an asks for another serial
number

62

:**

The NOFIND routine is called from the SEARCH routine.

It is

initiated when the entire file A has been searched and none of

the serial numbers matched.

This routine querries the user

to enter a description of the item and the location and

: stores the information in file C.
:**

.NOFIND

B111111

P"\e[2J"

P"ITEM NOT ON CMR"
W3

P "\e[20"
RC

P"ENTER DESCRIPTION":

P"OF THE ASSET "
pn\ru

K

RC

P"\e[2J"

P"ENTER LOCATION"®
P"OF THE ASSET "
P"\xr"

K
RC

G.INV

NOFIND ROUTINE

bar c¢o»de reader will beep to warn user
Clears the screen on the reader

Prompt user

Wait 3 sec before going to next
command

Clears screen on reader

Transfers the serial number to the Not
Found file (file C) and clear the
register

Prompt user

Carriage return

Get input from the keypad

Transfers the description to the Not
Found file (file C) and clear | 1e
register

Clears screen on reader

Prompt user

Carriage return

Get input from the keypad

Transfers location to Not found file
(file C) and clears the register
Goto INV routine

? - —— ———— WS - e m = - — e G e e S Y e o M S e T M A - e e e e o = S o = -

® o o —— = = —— = ——— . - e T S R WP = e G - e A e S R S G S D W e M S S e Se e e e e e - -

:******************************'k*********************************

The XMIT routine prompts the user to choose which file to

transmit:

the found file (FILE B)
(FILE C). Depending on the users input,

or the not found file
this routine calls

either XFIND or XNOFIND routines.

R A A AR A I AR AA R AR A R A A A AR AR A AARAAAAARARARAANR AR A AR AR AR AR AR AAA A Ak

63

JXMIT

D$0="" : Clears input register 0
P"\e[2J" : Clears screen on reader
) ENTER TO XMIT* : Prompt user

P*"Fl- FOUND FILE"
P*"F2- NOT FOUND FILE"®

P*\r" : Carriage return

A2 : Get ASCII input of 2 chars
G$0="F1" .XFIND : Goto XFIND routine if F1
G$0="F2" . XNOFIND : Goto XNOFIND routine if F2

:**

: The XFIND routine is called from XMIT routine. This routine
finds how many records are in the file. If there are no
records in the file the routine calls NO_RECS routine. This

routine also prompts the user that the reader is transmitting.
:**

.XFIND
H#1=B : Puts the number of records in
: FILE B into register 1
G#1=0.NO_RECS : Goto NO_RECS routine if FILE B
: doesn't have any records
D#2=0 : Sets register 2 equal to 0 (the
: first record in the file)
P"\e[2J" : Clears screen on reader
P" TRANSMITTING..." : Telle user reader is
: transmitting

:**

The TRANSFD routine transmits the found file (FILE B), one
record at a time. The file will be transmitted to the computer
: using intrscan software. The file will be transmitted to a

file called FOUND.DAT located in the intrscan directory on the
computer.
:**

. TRANSFD
D$0="" : Clears input register 0
D$0="~DATA_1_FOUND.DAT_* : IRL command for intrsacan to put
: the data appended to this
statement in a file called
: FOUND.DAT
D$0=$0+B(#2) : #2 is a pointer that is pointing
: to a record in FILE B. That
record will be appended to the
statement above.

XMP, $0 : Transmit using protocol the
: contents of register 0.
D#2=#2+1 : Increment the pointer
G#2<#1.TRANFD : Loop until the pointer equals the
: number of records found in FILE B
G.INV : Goto INV routine

K KA KRR AR KA RK KRR KR KA IR R IR A AR RN IR AKRAKR AR A AR AR AR AR A A ARk k k&

The XNOFIND routine is called from XMIT routine. This routine
finds how many records are in the file. If there are no
records in the file the routine calls NO_RECS routine. This

routine also prompts the user that the reader is transmitting.
:**

.XNOFIND
H#1=C : Puts the number of records in
: FILE C into register 1
G#1=0.NO_RECS : Goto NO_RECS routine if FILE C
: doesn't have any records
D#2=0 : Sets register 2 equal to 0 (the
: first record in the file)
P"\e[2J" : Clears screen on reader
P"TRANSMITTING..." : Tells user reader is
: transmitting

T RE K IR KRR AR AR KA RRA AR AR AR RRAARRRTIITRAR AR AR AR AR ARk Rk ko khk

The TRANSNO routine transmits the not found file (FILE C), one
record at a time. The file will be transmitted to the computer
using intrscan software. The file will be transmitted to a

file called NOFIND.DAT located in the intrscan directory on the

: computer.
R A ZZ2 222222222 X2 2222222 XX2 X 2R Xttt st st i il s Rt X X X8 8

65

. TRANSNO
D$O="" : Clears input register 0
D$0="~DATA_1_NOFIND.DAT ": IRL command for intrsacan to put
: the Aata appended to this
: statement in a file called
: NOFIND.DAT
D$0=$0+C(#2) : #2 is a pointer that is pointing
: to a record in FILE C. That
record will be appended to the
statement above.

XMP, $0 : Transmit using protocol the
: contents of register O.
D#2=#2+1 : Increment the pointer
G#2<#1.TRANNO : Loop until the pointer equals the
: number of records found in FILE C
G.INV : Goto INV routine

:**

NO_RECS is called from either XFIND or XNOFIND routines. This
routine is an exception handler. If the user tries to transmit
a file that doesn't have any records, the user will be prompted
the file is empty and the program will return to the INV

: routiline.
TR KRNI R I AR AR TR TR KRR KRR RKRRA I A T A IR IR ARk hhh ke hkkhkh kX

.NO_RECS
B111111 : Reader will beep a warning
P*\e[2J" : Clears screen on reader
P"NO RECORDS IN FILE" : Prompts user
w3 : Waits 3 seconds
G.INV : Goto INV routine
E : End of program

--TITLE

- NAME

- DATE

- DESCRIPTION

: LABELS package definition specifications

: Richard Hancock

: 20 Aug 1993

: This package contains all operations associated with the object Labels.

: Labels are created by extracting serial numbers from the CMR. The

: serial numbers are placed in a file called LABEL. These serial numbers
: are formatted the same as the reader input file (i.e. all the blanks are

: removed and the serial numbers are sorted in alpha numeric order. The
: serial numbers are then appended with the necessary control characters

: for communication with the bar code printer . This package contains the
: following operations: CREATE, OPEN_INPUT, CLOSE_INPUT,

: CLOSE_ OUTPUT, ADD_SN, PRINT LABEL and GET_SN. A

: detailed description. of each of the operations is provided in the package
: body.

with SERIAL_NUMBERS; use SERIAL_NUMBERS;

package LABELS is

procedure CREATE (NAME : in STRING);

procedure OPEN_INPUT (NAME : in STRING);

procedure CLOSE_INPUT (NAME : in STRING),
procedure CLOSE_OUTPUT (NAME : in STRING);

procedure ADD_SN (SN : in SERIAL_NUMBER);
procedure ADD_SN (SN : in STRING);

procedure PRINT_1.ABEL (SN: in STRING; LENGTH: in INTEGER);

procedure GET_SN (SN : out SERIAL_NUMBER);

function ENDOF_FILE return BOOLEAN;

CREATE_ERROR : exception,
OPEN_ERROR : exception;
CLOSE_ERROR : exception;

end LABELS;

67

- NAME
- DATE
-- DESCRIPTION

: LABELS package definition body

: Richard Hancock

: 20 Aug. 1993

: This package contains all operations associated with the object Labels.

: Labels are created by extracting serial pumbers from the CMR. The

: serial numbers are placed in a file called LABEL. These serial numbers
: are formatted the same as the reader input file (i.e. all the blanks are

: removed and the serial numbers are sorted in alpha numeric order. The
: serial numbers are then appended with the necessary control characters
: for communication with the bar code printer . This package contains the
: following operations: CREATE, OPEN_INPUT, CLOSE_INPUT,

: CLOSE_OUTPUT, ADD_SN, PRINT LABEL and GET_SN. A

: detailed description of each of the operations is provided in the package
. body.

with TEXT_IO; use TEXT_IO;

package body LABELS is
INFILE :FILE_TYPE;
OUTFILE :FILE_TYPE;
END_OF_FILE : BOOLEAN = false;

PROCEDURE CREATE

-- This procedure creates a file to store the serial numbers extracted from the CMRL file. Sets
-- the default output to this file.

procedure CREATE (NAME : in STRING) is

begin

TEXT_IO.CREATE (OUTFILE, OUT_FILE, NAME),
TEXT_IO.SET_OUTPUT (OUTFILE);

exception
when others =>

raise CREATE_ERROR;

end CREATE;

68

PROCEDURE OPEN_INPUT
-- This procedure opens the file storing serial numbers for input to format (ie remove blank
-- spaces) for printing bar code labels. Sets the default input to this file

procedure OPEN_INPUT (NAME : in STRING) is

begin
TEXT_IO.OPEN (INFILE, IN_FILE, NAME);
TEXT_IO.SET_INPUT (INFILE);
exception
when others =>
raise OPEN_ERROR;

end OPEN_INPUT;

PROCEDURE CLOSE_INPUT
-- This procedure closes the file, setting the default to standard input (ie keyboard)

procedure CLOSE_INPUT (NAME : in STRING) is

begin
TEXT_IO.CLOSE (INFILE);
TEXT_IO.SET_INPUT (TEXT_IO.STANDARD_INPUT):
exception
when others =>
raise CLOSE_ERROR;

end CLOSE_INPUT;

PROCEDURE CLOSE_OUTPUT

-- This procedure closes the file to output, setting the default to standard output (ie the
-~ monitor).

procedure CLOSE_OUTPUT (NAME : in STRING) is

begin
TEXT_IO.CLOSE (OUTFILE);
TEXT_IO.SET_OUTPUT (TEXT_IO.STANDARD_OUTPUT),
exception
when others =>
raise CLOSE_ERROR;

end CLOSE_OUTPUT;
69

PROCEDURE ADD_SN
-- This procedure receives a serial number of private type serial number and calls the function
- VALUE in package SERIAL NUMBERS which converts the serial number (to type string).
-- This procedure then writes the serial number to the file that is opened for current input .

procedure ADD_SN (SN : in SERIAL_NUMBER) is

begin
TEXT_IO.PUT_LINE (OUTFILE, SERIAL._NUMBERS.VALUE(SN));

end ADD_SN;

PROCEDURE ADD_SN

-- This procedure receives a serial number (type string) and writes the serial number to the
-- current file open for input

procedure ADD_SN (SN : in STRING) is

begin
TEXT_IO.PUT_LINE (OUTFILE, SN);

end ADD_SN;

PROCEDURE PRINT _LABEL

-- This procedure receives a serial number of type string and appends the necessary control
-- characters for communication with the bar code printer to each serial number. The serial
-- number and control characters are then written to COM2 port for printing.

procedure PRINT_LABEL (SN : in STRING; LENGTH : in INTEGER) is

STX: CHARACTER:= ASCIIL.STX;
ESC: CHARACTER:= ASCILESC;
CAN: CHARACTER:= ASCH.CAN;
ETB: CHARACTER:= ASCILETB;
ETX: CHARACTER:= ASCIL.ETX;
LABEL : STRING(1..LENGTH+7);

begin
LABEL:=STX&ESC&"E1"& CAN&SN&ETB&ETX;
TEXT_IO.PUT_LINE(OUTFILE,LABEL);

end PRINT_LABEL;

70

PROCEDURE GET_SN
-- This procedure gets a serial number from the current file open for output. Passes the serial

-- number (type string) to CREATE procedure in package SERIAL NUMBERS which returns a
-- serial number (private type serial number) with the same value. The procedure advances the
-- open file one line and returns the serial number(private type) to the calling procedure.

procedure GET_SN (SN : out SERIAL._NUMBER) is

VALUE : STRING (1..22);
LAST :INTEGER;

begin
TEXT_IO.GET (INFILE,VALUE);
SERIAL_NUMBERS.CREATE (VALUE, SN);
TEXT_1O.skip_line (INFILE);
exception
when TEXT 10.END_ERROR =>
END_OF_FILE = true;

end GET_SN;

FUNCTION ENDOF_FILE
-- This function returns the value of the END_OF_FILE flag

function ENDOF_FILE return BOOLEAN is

begin
return TEXT_IO.END_OF _FILE;

end ENDOF_FILE;

end LABELS;

71

-~ TITLE : Print Batch Labels

~ NAME : Richard M. Hancock

~ DATE 120 Aug 1993

-- DESCRIPTION : This procedure is the main driver the for the print bar code label protion
- : of the BCIS. This part of the system opens the CMRL file (ASCII file)
- : provided by the user and extracts all the serial numbers into a Label file.
- : These serial numbers are then formatted (any blanks at the front of the
- : serial numbers are removed) and the file is sorted into alpha-numeric
- : ascending order. This program uses the same code as the download

- : portion of the system to ensure the serial numbers downloaded to the
- : reader match the serial numbers on the labels. This program then

- : appends the necessary control characters for communication with the bar
- : code printer to each serial number and sends this info to the bar code

- printer via COM port 2. The objects used in this portion ofthe system are
- CMRL, READER _INPUT, SERIAL. NUMBERS, SN_ARRAY, and

- : FILE_PROCESSOR.

with CMRL; with LABELS;

with SERIAL,_NUMBERS; use SERIAL_NUMBERS;
with SN_ARRAY; use SN_ARRAY;

with FILE_PROCESSOR; use FILE_ PROCESSOR;
with TEXT_IO; use TEXT_IO;

procedure PRN_BATCH is

CMRL_FILE_NAME : STRING (1..4) = "CMRL";
LABEL_FILE NAME : STRING (1..6) = "LABELS";
OUTPUT_FILE_NAME : constant STRING = "COM2";

SN : SERIAL_NUMBER;
SN_COUNT :INTEGER = 0;
ARR_PTR : ARRAY_POINTER,;

begin
CMRL.OPEN (CMRI._FILE_NAME);
LABELS.CREATE (LABEL_FILE_NAME);
loop
CMRL.GET_SN (SN);
exit when CMRL.ENDOF_FILE;
SN_COUNT = SN_COUNT + 1;
LABELS.ADD_SN (SN);
end loop;

72

CMRL.CLOSE(CMRL_FILE_NAME);

LABELS.CLOSE_OUTPUT(LABEL_FILE_NAME);

SN_ARRAY.CREATE_ARRAY (SN_COUNT, ARR_PTR);

FORMAT_LABELS_FILE (SN_COUNT, LABEL_FILE_NAME, OUTPUT_FILE_NAME,
ARR_PTR);

exception
when CMRL.OPEN_ERROR =>
TEXT_IO.PUT_LINE (STANDARD_OUTPUT, "Error OPENING file CMRL");

when CMRL.CLOSE_ERROR =>
TEXT_IO.PUT_LINE (STANDARD_OUTPUT, "Error CLOSING file CMRL");

when ILABELS.CREATE_ERROR =>
TEXT_IO.PUT_LINE (STANDARD_OUTPUT, "Error CREATING file LABELS");

when LABELS.OPEN_ERROR =>
TEXT_IO.PUT_LINE (STANDARD_OUTPUT, "Error OPENING file LABELS");

when LABELS.CLOSE_ERROR =>
TEXT_IO.PUT_LINE (STANDARD_OUTPUT, "Error CLOSING file LABELS");

end PRN_BATCH;

73

--TITLE : Print Individual Labels

--NAME : Richard M. Hancock

~DATE : 22 Aug 1993

-- DESCRIPTION : This procedure is the main driver the for printing individual bar code

-—

-—

-

: labels. This program queries the user to enter a serial nmnber. The serial
: number is then appended with the necessary control characters for

: communication with a bar code printer. The serial number and control

: characters are then sent to the printer via the COM2 port. The object

: used in this portion of the system is LABEL.

with LABELS; with TTY;

with CURSOR; use CURSOR;

with COMMON_DISPLAY_TYPES; use COMMON_DISPLAY_TYPES;
with TEXT_IO; use TEXT_IO;

procedure PRN_INDIV is

OUTPUT_FILE_NAME : constant STRING = "COM2",;

SN :STRING(1..22);

ILENGTH : INTEGER = 0;

NO_BLINK: BOOLEAN = false;

FINISHED: BOOLEAN := false

BLANK : constant STRING:= "
ASK : constant STRING:= " ENTER A SERIAL NUMBER OR 'QUIT TO EXIT ";
BACK :COLOR := bhue;

FORE :COLOR := bright_white;

ESC :CHARACTER = ASCIL.ESC;

begin

while not FINISHED loop

TTY.CLEAR_SCREEN;
TTY.PUT(10,15,BLANK ,FORE,BACK ,NO_BLINK);
TTY.PUT(11,15,ASK , FORE BACK,NO_BLINK);
TTY.PUT(12,15,BLANK FORE BACK,NO_BLINK);
TTY.PUT(13,15,BLANK,FORE,BACK NO_BLINK),
CURSOR.MOVE(13,30);
TEXT_IO.GET_LINE(SN,LENGTH);
if SN(1..LENGTH) = "QUIT" or SN(1..LENGTH) = "Quit"
or SN(1..LENGTH) = "quit" then
FINISHED = true;
else
LABELS.CREATE (OUTPUT_FILE_NAME);
LABELS.PRINT_LABEIL(SN(1..LENGTH),LENGTH);
FINISHED := false:

74

LABELS.CLOSE_OUTPUT (OUTPUT_FILE_NAME);
end if;
end loop;
exception

when LABELS.CREATE_ERROR =>

TEXT_IO0.PUT_LINE (STANDARD_OUTPUT, "Error CREATING file LABELS"),
when LABELS.CLOSE_ERROR =>

TEXT_IO.PUT_LINE (STANDARD_ OUTPUT, "Error CLOSING file LABELS");

end PRN_INDIV;

75

TITLE : READER INPUT package definition specifications

- NAME : Richard Hancock
--DATE : 28 July 1993
-- DESCRIPTION : This package contains all operations associated with the object reader

-

: input. READER INPUT is a file that contains only serial numbers that

: were extracted from the CMRL. This file will be downloaded to the bar
: code reader before an inventory is conducted. The operations contained
: in this package are CREATE, OPEN INPUT, OPEN OUTPUT, CLOSE
: INPUT, CLOSE OUTPUT, ADD SERIAL NUMBER, GET SERIAL

: NUMBER, and END OF FILE. A detailed description of each of these
: operations are contained in the Package Body.

with SERIAI._NUMBERS; use SERIAL_NUMBERS;

package READER_INPUT is

procedure CREATE (NAME : in STRING);

procedure OPEN_INPUT (NAME : in STRING);
procedure OPEN_OUTPUT (NAME : in STRING);

procedure CLOSE_OUTPUT (NAME : in STRING);
procedure CLOSE_INPUT (NAME : in STRING),

procedure ADD_SN (SN : in SERIAL,_NUMBER);
procedure ADD_SN (SN : in STRING);

procedure GET_SN (SN : out SERIAL._NUMBER);

function ENDOF_FILE return BOOLEAN;

CREATE_ERROR : exception;
OPEN_ERROR : exception;
CLOSE_ERROR : exception;

end READER_INPUT;

76

-- TITLE : READER INPUT package definition body

-- NAME : Richard Hancock

-- DATE : 28 July 1993

-- DESCRIPTION : This package contains all operations associated with the object reader

-- : input. READER INPUT is a file that contains only serial numbers that
- : were extracted from the CMRL. This file will be downloaded to the bar
-- : code reader before an inventory is conducted. The operations contained
- . in this package are CREATE, OPEN INPUT, OPEN OUTPUT,

-- : CLOSE INPUT, CLOSE OUTPUT, ADD SERIAI NUMBER, GET

- : SERIAL NUMBER, and END OF FILE. A detailed description of each
- : of these operations are contained in the Package Body.

with TEXT_IO; use TEXT_IO;
package body READER_INPUT is

INFILE :FILE_TYPE;
OUTFILE : FILE_TYPE;
END_OF_FILE :BOOLEAN := false;

--PROCEDURE CREATE
-- This procedure creates a file to store the serial numbers extracted from the CMRL file. Sets
-- the default output to this file

procedure CREATE (NAME : in STRING) is

begin
TEXT_10.CREATE (OUTFILE. OUT FILE, NAME);
TEXT_IO.SET_OUTPUT (OUTFILE);
exception
when others =>
raise CREATE_ERROR;

end CREATE;

PROCEDURE OPEN_INPUT
-- This procedure opens the file storing serial numbers for input to format (ie remove blank
-- spaces) for bar code reader input. Sets the default input to this file

77

procedure OPEN_INPUT (NAME : in STRING) is

begin
TEXT_IO.OPEN (INFILE, IN_FILE, NAME);
TEXT_IO.SET_INPUT (INFILE);
exception
when others =>
raises OPEN_ERROR;

end OPEN_INPUT;

PROCEDURE OPEN_OUTPUT
— This procedure opens the file storing serial numbers for output to hold formatted serial
— numbers for bar code reader input. Sets default output to this file.

procedure OPEN_OUTPUT (NAME : in STRING) is

begin
TEXT_10.0PEN (OUTFILE, OUT_FILE, NAME);
TEXT_IO.SET_OUTPUT (OUTFILE);
exception
when others =>
raise OPEN_ERROR;

end OPEN_OUTPUT;

PROCEDURE CLOSE._OUTPUT

- This procedure closes the file to output, setting the default to standard output (ic the monitor).

procedure CLOSE_OUTPUT (NAME : in STRING) is

begin
TEXT_IO.CLOSE (OUTFILE);
TEXT_IO.SET_OUTPUT (TEXT_IO.STANDARD_OUTPUT);
exception
when others =>
raise CLOSE_ERROR;

end CLOSE_OUTPUT;

78

PROCEDURE CLOSE_INPUT
-- This procedure closes the file, setting the default to standard imput (ie keyboard)

procedure CLOSE_INPUT (NAME : in STRING) is

begin
TEXT_IO.CLOSE (INFILE);
TEXT_IO.SET_INPUT (TEXT_IO.STANDARD_INPUT);
exception
when others =>
raise CLOSE_ERROR;

end CLOSE_INPUT;

PROCEDURE ADD_SN
-- This procedure receives a serial number of private type serial number and calls the function
- VALUE in package SERIAL NUMBERS which converts the serial number (to type string).
-- This procedure then writes the serial number to the file that is opened for current input.

procedure ADD_SN (SN : in SERIAL_NUMBER) is

begin
TEXT_IO.PUT_LINE (OUTFILE, SERIAL_NUMBERS.VALUE(SN));

end ADD_SN;

PROCEDURE ADD_SN
-- This procedures receives a serial number (type string) and writes the serial number to the
-- current file open for input.

procedure ADD_SN (SN : in STRING) is

begin
TEXT_10.PUT_LINE (OUTFILE, SN),

end ADD_SN;

PROCEDURE GET_SN
- This procedure gets a serial number from the current file open for output. Passes the serial

-- number (type string) to CREATE procedure in package SERIAL NUMBERS which returns a
-- serial number (private type serial number) with the same value. The procedure advances the

-- open file one line and returns the serial number(private type) to the calling procedure.

79

procedure GET_SN (SN : out SERIAL._ NUMBER) is

VALUE : STRING (1..22);
LAST : INTEGER;

begin
TEXT_IO.GET (INFILE,VALUE);
SERIAL_NUMBERS.CREATE (VALUE, SN);
TEXT_IO.SKIPLINE (INFILE),
exception
when TEXT JO.END_ERROR =>
END_OF_FILE := true;

end GET_SN;

FUNCTION ENDOF_FILE
— This function returns the value of the END_OF_FILE flag

function ENDOF_FILE return BOOLEAN is

begin
return TEXT IO.END_OF_FILE;

end ENDOF_FILE;

end READER_INPUT,;

80

- TITLE : READER OUTPUT package definition specifications

- NAME : Richard Hancock

- DATE : 28 July 1993

-- DESCRIPTION : This package contains all operations associated with the object reader

:output. READER OUTPUT is a file that contains only serial numbers

: that were uploaded from the barcode reader. These files will be formated
: for processing into reports. The operations contained in this package are
: OPEN, CLOSE, GET SERIAL NUMBER AND END OF FILE. A

: detailed description of each of these operations are contained in the

: Package Body.

package READER_OUTPUT is

procedure OPEN (NAME : in STRING);

procedure CLOSE (NAME : in STRING);

procedure GET_SN (SN : out STRING);

procedure GET_DESCRIPTION (ASSET_DESCRIPTION : out STRING);

procedure GET_LOCATION (ASSET_LOCATION : out STRING);

function ENDOF_FILE return BOOLEAN;

OPEN_ERROR : exception;
CL.OSE_ERROR : exception;

end READER_OUTPUT,;

81

-- TITLE : READER OUTPUT package definition body

- NAME : Richard Hancock

- DATE : 28 July 1993

-- DESCRIPTION : This package contains all operations associated with the object reader

- : output. READER OUTPUT is a file that contains serial numbers that
- : were uploaded from the barcode reader. These files will be formated

- : for processing into reports. The operations contained in this package are
- : OPEN, CLOSE, GET SERIAL NUMBER, GET LOCATION, GET

-- : DESCRIPTION and END OF FILE. A detailed description of each of
- : these operations are contained in the Package Body.

with TEXT_IO; use TEXT_IO;
package body READER_OUTPUT is

READER_OUTFILE :TEXT_IO.FILE_TYPE;
END_OF_FILE : BOOLEAN := false;

PROCEDURE OPEN
-- This procedure opens the file generated by the bar code reader and sets the default input to the
-- given file name.

procedure OPEN (NAME : in STRING) is

begin
TEXT 10.0PEN (READER_OUTFILE, IN_FILE, NAME);
TEXT_IO.SET_INPUT (READER_OUTFILE);
exception
when others =>
raise OPEN_ERROR;

end OPEN;

PROCEDURE CLOSE
-- This procedure closes the output file produced by the bar code reader and sets the default
-- input to standard input (ie keyboard).

82

procedure CLOSE (NAME : in STRING) is

begin
CLOSE (READER_OUTFILE);
TEXT_IO.SET_INPUT (TEXT_IO.STANDARD_INPUT);
exception
when others =>
raise CLOSE_ERROR;

end CLOSE;

PROCEDURE GET_SN
-- This procedure gets a serial number from the bar code reader output file. This procedure

-- counts whow many characters are in the serial number and pads the front of the serial number
-- with blanks to return the serial number to a 22 character field

procedure GET_SN (SN : out STRING) is

VALUE : STRING (1..22);
LAST :NATURAL;
BLANK _COUNT :NATURAL;
begin
TEXT_IO.GET_LINE (READER_OUTFILE, VALUE, LAST); -inputasn
BLANK_COUNT = 22 - LAST; -- and then pad it
for1in 1.BLANK_COUNT loop -- with blanks to
SNAI..D="" -- get 22 chars.
end loop;
SN (BLANK_COUNT+1..22) = VALUE (1..LAST);
exception

when TEXT_IO.END_ERROR =>
END_OF_FILE := true;

end GET_SN; ’ .

PROCEDURE GET_DESCRIPTION
— This procedure gets the description of the asset from the not found file that was created during
— the inventory. The description is returned to the procedure FORMAT_EXCEPTION_FILE to
- be processed into exception report.

83

procedure GET_DESCRIPTION (ASSET_DESCRIPTION : out STRING) is

VALUE : STRING (1..30);
LAST :NATURAL;

begin
TEXT_IO.GET_LINE (READER_OUTFILE, VALUE, LAST);
for I in LAST+1..30 loop
VALUE(.I)="";
end loop;
ASSET_DESCRIPTION = VALUE;
exception
when TEXT_IO.END_ERROR =>
END_OF_FILE := true;

end GET_DESCRIPTION;

PROCEDURE GET_LOCATION
-- This procedure gets the location of the asset from the not found file that was created during

-- the inventory. The location is returned to the procedure FORMAT_EXCEPTION_FILE to be
- processed into the exception report.

procedure GET_LOCATION (ASSET_LOCATION : out STRING) is

VALUE : STRING (1..18);
LAST :NATURAL;

begin
TEXT_IO.GET_LINE (READER_OUTFILE, VALUE, LAST);
forI in LAST+1..18 loop
VALUE(.I)="",;
end loop;
ASSET_LOCATION = VALUE,;
exception
when TEXT_IO.END_ERROR =>
END_OF_FILE = true;

end GET_LOCATION;

84

-

FUNCTION ENDOF_FILE
-- This function returns the END_OF_FILE flag variable.

function ENDOF_FILE return BOOLEAN is

begin
return END_OF_FILE;

end ENDOF_FILE;

end READER_OUTPUT;

85

: REPORT package definition specifications

: Richard Hancock

: 28 July 1993

: This package contains all operations associated with the object report.

: REPORT is a file that replicates the orignial CMRL but the serial

: numbers that were found during the inventory were annotated with a flag.
: XREPORT is a file that contains assets that were found during the

: inventory but were not on the CMRL. This report contains the serial

: number, description and location of the assets. The operations contained
: in this package are CREATE, CLOSE, ADD LINE and

: FORMAT_EXCEPTION_REPORT. A detailed description of each of
: tuese operations are contained in the Package Body.

with TEXT _IO; use TEXT_IO;

package REPORT is

procedure CREATE (NAME : in STRING);

procedure CLOSE (NAME : in STRING);

procedure ADD_LINE (LINE : in STRING);

procedure FORMAT_EXCEPTION_REPORT;

CREATE_ERROR : exception;

CLOSE_ERROR : exception;

end REPORT;

86

- TITLE : REPORT package definition body
-- NAME : Richard Hancock
- DATE : 28 July 1993

-- DESCRIPTION : This package contains all operations associated with the object report.

-- : REPORT is a file that replicates the orignial CMRL but the serial

- : numbers that were found during the inventory were annotated with a flag.
- : XREPORT is a file that contains assets that were found during the

- : inventory but were not on the CMRL. This report contains the serial

- : number, description and location of the assets. The operations contained
- : in this package are CREATE, CLOSE, ADD LINE and

- : FORMAT_EXCEPTION_REPORT. A detailed description of each of
- : these operations are contained in the Package Body.

with TEXT_IO; use TEXT_IO;

package body REPORT is
REPORT_FILE : FILE_TYPE;
MORE_SERIAL_NUMBERS :BOOLEAN = FALSE;
SN_COUNT :INTEGER::= 0;

PROCEDURE CREATE
-- This procedure creates the output report file with the given name and sets the default output to
-- that file.

procedure CREATE (NAME : in STRING) is

begin
TEXT_IO.CREATE (REPORT_FILE, OUT_FILE, NAME);
TEXT_IO.SET_OUTPUT (REPORT_FILE);
exception
when others =>
raise CREATE_ERROR;

end CREATE;
PROCEDURE CLOSE

— This procedure closes the CMRL report file of the given name and sets the default output back
-- to standard output (ie monitor).

87

procedure CLOSE (NAME : in STRING) is

begin
CLOSE (REPORT_FILE);
TEXT_IO.SET_OUTPUT (TEXT_IO.STANDARD_OUTPUT);
exception
when others =>
raise CLOSE_ERROR;

end CLOSE;
PROCEDURE ADD_LINE

- This procedure adds a line to the CMRL report file.

procedure ADD_LINE (LINE : in STRING) is

begin
PUT_LINE (REPORT_FILE, LINE);

end ADD_LINE;

-- This procedure formats the exception report.

PROCEDURE FORMAT_EXCEPTION_REPORT

procedure FORMAT_EXCEPTION_REPORT is

TITLE : STRING (1..16):= "EXCEPTION REPORT";
HEADER1 : STRING (1..13):= "Serial Number";
HEADER2 : STRING (1..11):= "Description";

HEADER3 : STRING (1..8):= "Location";

begin
NEW_LINE(3);
SET_COL(32),
PUT_LINE(TITLE),
NEW_LINE(2);
SET_COL(10);
PUT(HEADER1),
SET_COL(28);
PUT(HEADER?2);
SET_COL(62);
PUT_LINE(HEADER3);
NEW_LINE;

end FORMAT_EXCEPTION_REPORT;

end REPORT;
88

-- TITLE : Serial Number Array definition package specifications

-- NAME : Richard Hancock

-- DATE : 17 July 1993

-- DESCRIPTION : This package contains all operations associated with the object Serial

- : Number Array. This object was not developed during the design phase,
- : but was created to help with the implementation of the system. This

-- : object: is used to sort the serial number files and flag a serial number as
- : found. The package contains operations that will CREATE an array,

- : INSERT a serial number into the array, SORT an array by value, SORT
- : an array by initial file position, MARK a serial number as found, and

- : removes as serial number from the Array. A detailed description of each
- : of the operations is provided in the package body.

with SERIAL._NUMBERS; use SERIAL._ NUMBERS;
package SN_ARRAY is

type ARRAY_RECORD is
record
DATA : SERIAL_ NUMBER;
KEY :INTEGER;
end record;

type SER_ ARRAY is array (INTEGER RANGE <) of ARRAY _RECORD;
type ARRAY_POINTER is access SER_ARRAY;

procedure CREATE_ARRAY (SN_COUNT : in INTEGER; ARR_P1TR : out
ARRAY_POINTER);
procedure INSERT_SN (INDEX : in INTEGER; VALUE : in SERIAI._NUMBER,;
ARR_PTR : in ARRAY_POINTER);
procedure SORT_BY_VALUE(ARRAY_SIZE : mn INTEGER; ARR_PTR : in
ARRAY_POINTER);
procedure SORT_BY_KEY (ARRAY_SIZE : in INTEGER; ARR_PTR : in
ARRAY_POINTER);
procedure MARK_SN_FOUND (SN_STR : in STRING; ARR_PTR :in
ARRAY_POINTER);
function REMOVE_SN (INDEX : in INTEGER; ARR_PTR : in ARRAY_POINTER)
return SERIAL_NUMBER;

end SN_ARRAY;

89

- TITLE : Serial Number Array definition package body

-- NAME : Richard Hancock

- DATE : 17 July 1993

— DESCRIPTION : This package contains all operations associated with the object Serial

- : Number Array. This object was not developed during the design phase,
-- : but was created to help with the implementation of the system. This

- : object is used to sort the serial number files and flag a serial munber as
- : found. The package contains operations that will CREATE an array,

-- : INSERT a serial number into the array, SORT an array by value, SORT
- : an array by initial file position, MARK a serial number as found, and
- : removes a serial number from the Array. A detailed description of each
- : of the operations is provided in the package body.

with TEXT_IO; use TEXT_IO;

package body SN_ARRAY is

PROCEDURE CREATE_ARRAY
-- This procedure creates an array with a size equal to the number of serial numbers found m the
-- CMRL. The procedure returns an array pointer to the calling procedure, which points to the

-- memory location of the array. This pointer allows us to access and preserve the contents of
-- the array after a procedure is closed. This is a benefit because we do not have tc pass an entire
-- array from procedure to procedure, which could result in the data being erroneously

-- modified.

procedure CREATE_ARRAY (SN_COUNT : in INTEGER; ARR_P1R : out
ARRAY_POINTER) is

begin
ARR_PTR = new SER_ARRAY (1..SN_COUNT),
end CREATE_ARRAY;

PROCEDURE INSERT_SN
-- This procedure inserts the serial number value and the original file position of the serial

-- pumber into an amray record element. The file position is saved for when we put the serial
-- numbers back in the CMRI. with a found flag.

procedure INSERT_SN (INDEX : in INTEGER; VALUE : in SERIAL_NUMBER;
ARR_PTR : in ARRAY_POINTER) is

begin
ARR_PTR(INDEX).DATA = VALUE,
ARR_PTR(INDEX).KEY :=INDEX;
end INSERT_SN;

PROCEDURE SORT_BY_VALUE

This procedure conducts a shell sort of the array by serial number value, placing the serial

— numbers in ascending alpha-numeric order. This procedure was obtained from a book called
— ALGORITHMS written by ROBERT SEDGEWICK (1984). This procedure is found on

-- page 98.

procedure SORT_BY_VALUE (ARRAY_SIZE : in INTEGER; ARR_PTR : in
ARRAY_POINTER) is

TEMP_REC : ARRAY_RECORD;
TEMP_SN : SERIAL_NUMBER;
H,J :INTEGER;

begin
H=1,
loop
H = 3*H+1;
exit when H > ARRAY_SIZE;
end loop;
loop
H=H/3;
forIin H+1..ARRAY_SIZE loop
TEMP_REC = ARR_PTR (1),
TEMP_SN := ARR_PTR(I).DATA;
=1
while ARR_PTR(J-H).DATA > TEMP_SN loop
ARR_P1R (J) = ARR_PIR (J-H);
J=JH;
exit when J <= H;
end loop;
ARR_P1R (J) = TEMP_REC;
end loop;
exit when H=1;
end loop;

91 ~

exception
when CONSTRAINT_ERROR =>
text_io.put_line (standard_output, "-CONSTRAINT_ERROR in
ARRAY_SORT_BY_BALUE procedure.--");
end SORT_BY_VALUE;

PROCEDURE SORT_BY_KEY
-- This procedure conducts a shell sort of an array by key, which places the serial numbers back
-- in the order that they were read in from the CMRL file. This procedure was obtained from a
— book called ALGORITHMS written by ROBERT SEDGEWICK (1984). This procedure is
— found on page 98.

procedure SORT_BY_KEY (ARRAY_SIZE : in INTEGER; ARR_PTR : in
ARRAY_POINTER) is

TEMP_REC : ARRAY_RECORD;
TEMP_KEY :INTEGER;
H,) : INTEGER;

begin
H=1;
loop
H = 3*H+1;
exit when H > ARRAY_SIZE;
end loop;
loop
H=H/3;
for I in H+1..ARRAY_SIZE loop
TEMP_REC = ARR_PTR (I);
TEMP_KEY = ARR_PTR(I). KEY;
J=1
while ARR_PTR(J-H).KEY > TEMP_KEY loop
ARR_P1R (J) = ARR_PTR (J-H);
J=JH;
exit when J <= H;
end loop;
ARR_P1R (J) = TEMP_REC;
end loop;
exitwhen H=1;
end loop;

92

exception
when CONSTRAINT_ERROR =>
text_io.put_line (standard_output, "-- CONSTRAIN_ERROR in ARRAY
SORT_BY_KEY procedure.—");

end SORT_BY_KEY;

PROCEDURE MARK_FOUND

- This procedure is passed a serial number (string of 22 chars). The procedure opens the serial
-- number array and sea:ches the array for a serial number that matches. When a match is

-- found the MARK procedure in the package SERIAL. NUMBERS is called and appends a

-- flag to the end of the serial number. This serial number is then placed back into the array

procedure MARK_SN_FOUND (SN_STR:in STRING; ARR_PTR:in ARRAY_POINTER) is

I :INTEGER = 1;
VALUE :STRING (1..22);

begin
VALUE := SERIAL_NUMBERS.VALUE (ARR_PTR (I).DATA);
while (VALUE (22..22) = "F") or (SN_STR /= SERIAL_NUMBERS.VALUE (ARR_PTR
(1).DATA)) loop
I1=1+1;
VALUE = SERIAL,_NUMBERS.VALUE (ARR_PTR (I).DATA);
end loop;
SERIAL_NUMBERS.MARK (ARR_PTR(I).DATA),

exception
when CONSTRAINT_ERROR =>
text_io.put_line (standard_output, "--CONSTRAINT_ERROR in ARRAY
MARK_SN_FOUND procedure.--");

end MARK_SN_FOUND;

93

FUNCTION REMOVE_SN

-- This function given an index value and the location of an array goes into the array and retumns
— the serial number value found in the position specified by the index value.

function REMOVE_SN (INDEX : in INTEGER; ARR_PTR :in ARRAY_POINTER)
return SERIAL._NUMBER is

begin
retwn ARR_PTR(INDEX).DATA;

end REMOVE_SN;

end SN_ARRAY;

94

-- TITLE
-- NAME
- DATE
-- DESCRIPTION

: SERIAL NUMBERS package definition specifications

: Richard Hancock

: 28 July 1993

: This package contains all operations associated with the object serial

: numbers. Serial numbers are alphanumeric and can be up to 23

: characters in length. This package defines serial numbers as a private

: type to enhance the object oriented principle of information hiding. By

: declaring serial numbers a private type we limit the operations that can be
: performed on serial numbers outside this package. The operations

: contained in this package are: CREATE (converts type string to type

: serial number), MARK (places a flag at the end of found serial numbers),
: VALUE (converts type serial number to type string), and ">" (compares

: two serial numbers and returns a boolean). A detailed description of each
: of these operations are provided in the Package Body.

package SERIAL_NUMBERS is

type SERIAI,_NUMBER is private;

procedure CREATE (VALUE : in STRING; SN : out SERIAL_NUMBERY);

procedure MARK (SN : in out SERIAL_NUMBER),

function VALUE (SN : SERIAL_NUMBER) retum STRING;

function ">" (SN1,SN2 : in SERIAL_NUMBER) retun BOOLEAN;

private type SERIAL._NUMBER is

record

VALUE : STRING (1..22),

end record;

end SERIAL._NUMBERS,;

95

- TITLE : SERIAL NUMBERS package defmition body
- NAME : Richard Hancock
- DATE : 28 July 1993

-- DESCRIPTION : This package contains all operations associated with the object serial

- : number. Serial numbers are alphanumeric and can be up to 23 characters
- : in length. This package defines serial numbers as a private type to

- : enhance the object oriented principle of information hiding. By declaring
- : serial numbers a private type we limit the operations that can be

- : performed on serial numbers outside this package. The operations

- : contained in this package are CREATE (converts type string to type

- : serial number), MARK (places a flag at the end of found serial numbers)
- : and VALUE (converts type serial number to type string). A detailed

- : description of each of these operations are provided in the Package Body

with TEXT_IO; use TEXT_IO;
package body SERIAL._NUMBERS is

PROCEDURE CREATE
-- This procedure accepts a serial number value (of type string) and creates a new serial number
-- (of private type serial number) with the same value. This preserves the integrity of the serial
— numbers because using this type limits the operations performed outside this package.

procedure CREATE (VALUE : in STRING; SN : out SERIAL_NUMBER) is

begin
SN.VALUE = VALUE;

end CREATE;

PROCEDURE MARK
-- This procedure removes two blanks from the front of the serial number and appends a blank
— and an F to flag the serial number as found. This procedure assumes the length of a serial
— number will not exceed 22 characters.

procedure MARK (SN : in out SERIAL_NUMBER) is

begin
SN.VALUE = SN.VALUE (3..22) & "F";

end MARK;

FUNCTION VALUE
-- This function accepts a serial number (of private type serial number) and converts it to type
-- string. This is necessary so we can perform necessary functions to the serial number outside
-- this package.

function VALUE (SN : SERIAL_NUMBER) return STRING is

begin
return SN.VALUE;

end VALUE;

FUNCTION ">"

-- This function is used to compare the values of two serial numbers and return a boolean value
-- if the first serial number is greater that the second. This function is used in the Package
-- SN_ARRAY during the procedure SORT_BY_VALUE.

function ">" (SN1,SN2 : in SERIAL_NUMBER) return BOOLEAN is

begin
return SN1.VALUE > SN2.VALUE;

end ">";

end SERIAL_NUMBERS:

97

APPENDIX B
BCIS USER'S MANUAL

A. INTRODUCTION

The Bar Code Inventory System (BCIS) is an automated
inventory system designed to provide Marine Corps Systems Command
(MARCORSYSCOM) with an efficient and effective tool with which to
manage the unit's serialized assets.

The following special topics are presented to facilitate

introduction to this system:

INSTALLATION AND SETUP

STARTING THE SYSTEM

DOWNLOAD FILE TO BAR CODE READER
CONDUCTING AN INVENTORY
UPLOADING INVENTORY RESULTS
PRINTING REPORTS

PRINTING BAR CODE LABELS

NSOy e WP

B. INSTALLATION AND SETUP
1. Compatibility and Requirements
The BCIS is compatible with any IBM personal computer or
IBM compatible personal computer. In addition, the BCIS requires

the following configuration:

MS-DOS or PC-DOS (Versions 5.0 or 6.0).
640K RAM (1M recommended).

Two serial ports and one parallel port
Intermec Bar Code Reader

Intermec Bar Code Printer

10-9 Null Modem Cable

25-Pin Printer to PC Cable

Visible Laser Scanner

0~ Ut WN =

98

2.

Installation

To install the Bar Code Inventory System on a personal

computer, place the BCIS diskette in B drive (or Drive A) of the

computer and type B:\INSTALL (or A:\INSTALL).

The install

program will create four directories on the computer's hard drive

and copy the system programs to those directories.

When the

installation process is complete check the computer's hard drive

for the following directories and programs:
BCIS

BCIS .COM
BATCHKEY . COM
CLRSCR .COM
TEXTOUT .COM
SETPOS .COM
DRAWBOX .COM

BCIS/ADA

CMR_RPT .EXE
DOWNL.OAD .EXE
PRN_BATCH . EXE
X_REPORT .EXE
PRN_INDIV.EXE

INTRSCAN

README

COMMDRV .EXE
INTRSCAN. EXE
PCHOST .EXE
TERMDRV .EXE
UTILDRV .EXE
INV . IRL
INTRSCAN. INI

PCIRL

PCIRL .EXE
PIPE .EXE
README

PCIRL .CFN
BCIS . IRL
INV .IRL

In addition to the system files, a file called
PCDRIVER.SYS will be added to the computer's Root directory.
PCDRIVER.SYS is a PCIRL device driver that will manage the
communication protocol for uploading and downloading programs and
files.

3. Setup

Before PCIRL can be utilized, ANSI.SYS must be added to
the Root directory and two lines must be added to the CONFIG.SYS
File. ANSI.SYS is a DOS device driver that will manage the PCIRL
screen output.

To add the required lines to the CONFIG.SYS file, perform

the following steps:

1. Move to the Root directory by typing CD\.
2. At the DOS prompt, type EDIT CONFIG.SYS.
3. Press [Enter].

4. At the end of the CONFIG.SYS lines, type the following:
DEVICE=ANSI.SYS.

5. Press [BEnter].
6. On the next line, type DEVICE=PCDRIVER.SYS.
7. Press [Enter].

8. Press [Alt] to activate the menu. Use the arrow keys to
select FILE and press [Enter].

9. Select SAVE and press [Enter].

10. Press [Alt] to activate the menu. Use the arrow keys to
select FILE and press [Enter].

11. Select EXIT and press [Enter].

100

12.
13.

14.

15.

c.

At the DOS prompt, type the following: TYPE CONFIG.SYS.

Press [Enter].

Verify that CONFIG.SYS now includes the two required
lines:

DEVICE=ANSI.SYS

DEVICE=PCDRIVER. SYS

Reboot the computer by pressing{Ctrl]-{[Alt]-([Del].

STARTING THE SYSTEM

To initiate the Bar Code Inventory System, move to the BCIS

directory by typing CD\BCIS. The system starts when BCIS is

entered at the >C:\BCIS prompt.

Once in the Bar Code Inventory System, the user is directed

to the Main Menu. Figure B.1l illustrates the options available

to the user. To navigate through the system, type the number in

front of the desired option. For example, to exit the system

press [5] and hit [Enter].

BAR CODE INVENTORY SYSTEM

1. Download File to Reader
2. Receive Inventory Results
3. Print Reports

4. Print Bar Code Labels

5. Exit to DOS

ENTER (1..5)

FIGURE B. Main Menu

101

D. DOWNLOAD FILE TO BAR CODE READER
This portion of the system extracts the serial numbers from
the CMR Listing and creates a serial number file. The file is
formatted for the reader and is passed to the PCIRL directory for
download. After the file is downloaded to the reader, the user
is returned to the Main Menu, (see Figure B.l1l). The serial
number file must be downloaded to the reader before conducting an
inventory.
1. Establish a Connection
Before commencing the download portion of the system,
connect the male end of the of the 10-9 Null Modem Cable into the
reader's communication dock and the female end into the COMl1 port
of the personal computer.
2. Set Protocol On Reader
The communication protocol, on the reader, must be set to
*POLLING MODE D" before downloading a file. The following
example illustrates the steps required to set the reader's
protocol to "POLLING MODE D":

Prese the reader's ON-OFF key to turn the reader on.

At the "READY" prompt, press [Ctrl]-[E] to enter
configuration mode. The prompt in Figure B.2 appears
on the reader's screen:

CONFIGURATION MENU:
Press <?> for help,
<ENTER> to continue
<CNTRL-2> to exit

FIGURE B.2 Reader Configuration Prompt

102

Press [ENTER] to continue. The prompt in Figure
appears:

CONFIGURATION MENU:
Select or modify
bar codes?

NO

FIGURE B.3 Bar Code Option

Press [ENTER] for no. The screen in Figure B.4
appears:

CONFIGURATION MENU:
Select or modify

operating parms?
NO _

FIGURE B.4 Operating Parameter Option

Press [ENTER] for no. The screen in Figure B.5
appears:

CONFIGURATION MENU:
Select or modify

comm protocol?
NO (now=PT. TO PT.)

FIGURE B.5 Comm Protocol Option

Press [SPACE] twice to change to *"POLLING MODE D*
Protocol.

Press [Alt]-[E] to save changes and exit
Configuration Menu.

103

B.3

]

3. Place CMR Listing in Proper Directory
Before selecting the download option from the Main Menu,
the CMR Listing must be copied to the BCIS\ADA directory under
the File Name CMRL. 1If this step is not accomplished prior to
initiating download, the user will receive a quick error message
and the program will return to the main menu.
4. Initiating Download Option
Once the CMRL File is copied to the BCIS\ADA directory,
the download can be started by pressing [1] then [Enter]. The
system will then display a message that Serial Numbers are being
extracted from the CMR.
When all the serial numbers have been extracted from the
CMR the screen in Figure B.6 will be displayed. This screen is

the PCIRL Set-Up Screen. To proceed with downloading the file to

e ———— N

PC-1RL is now ready for a FUNCTICN selection.

FUNCTION nomes ore listed in the top !ine of the dispiay.
Some have Options ehich witl appear in drop-doen senus
shen a FUNCTION is selected. For a description of the
FUNCTIONs and their Options, select INFO. Uhen aore Helip
is aguailabie, the Heip key [F1] is displayed.

>> To select a FUNCTION:
- Hoid doen the [RIt] key.
- Press the firat ietter in the FUNCTION nowme.

>> To select an Option from o drop-doen menu:
- Press the first letter in the Option noae.

>> To cleor this screen, press the [Esc] key.

PC-iAL DEVELOPNENT SOFTURRE
PROGRAN 049318. -

COPYRIGHT (c) 1987

INTERNEC CORPORATION

Ail rights reserved.

FIGURE B.6 PCIRL Set-Up Screen

104

the reader, this screen must be cleared before a function can be
selected. To clear the Set-Up Screen press [Esc].
5. Configure PCIRL for Communication

The first time the Bar Code Inventory System is used,
PCIRL must be configured prior to downloading the file. To
select the CONFIG function enter [Alt]-([C]. Verify that the
CONFIG Screen looks like Figure B.7. To make configuration
changes, use the arrow keys to move to the appropriate field and

manually enter the correct setting.

4 N\
o o |
Text editor file name _(PlPE.EXE included in PC-1RL)

Compile error destination L (E = .IRE, L = .IAL)
Reader display line count 4 (up to ¢)
line length 20 (up to 20)

Transmit output to .IRX
file during Run/Debug N (¥ or N)

Upioad/0oenload Parcseters:

Transfer via controller? .. H (Y or N)
Boud rote 9600 (9600,4800,2400,1200,600,300)
Parity . .ooviini € (E, 0 or W)
Dato bits ? (? or 8)
Stop bits 1 (1 or 2)
Conpile before Bownload? .. ¥ (¥ or N)
Compact before Bownload? .. N (Y or N)
Target EPRON selection 1 (1 = GI, 2 = Hitachy, 3 = TI,

4 = Intei, S = NEC)

3
N y

FIGURE B.7 PCIRL Configuration Screen

6. Downloading File to Reader
After configuring PCIRL, move to the LOAD function by
pressing [Alt]-[L]. This creates a drop-down menu as depicted in

Figure B.8. Select [D] for download and type READIN for the

105

8 - B

Upload

Downlood

Format
“Transfer

Oefoult Directory A:\
SAMPLE . IRL TEST. IRL

\‘Illl'z -

FIGURE B.8 PCIRL Load Screen

download file name. Using the down arrow, move to the file
destination field and enter [A]. Turn the bar code reader on by
Pressing the [ON-OFF] key and wait for the ready prompt. Hit
[ENTER] on the computer keyboard and PCIRL will download the file
to the reader. The download process is finished when PCIRL
displays the message *DOWNLOAD COMPLETE..." in the lower right
corner of the screen. Enter [F2] to exit the download menu and
[Alt]-[Q] to return to the BCIS Main Menu. This completes the

download portion of the system.

E. CONDUCTING THE INVENTORY

This portion of the system is performed with the bar code
reader. The reader scans bar code labels affixed to the
serialized assets and checks to see if the asset is on the CMR.
If the asset inventoried is on the CMR the serial number is

recorded in the Found File. If the asset is not on the CMR the

106

user is prompted to enter a description and location of the

asset. This information along with the serial number is then

recorded in the Not Found File.

To begin the inventory, connect the laser scanner to the bar
code reader. Press the [ON-OFF] key to turn the reader on and
wait for the ready prompt. At the ready prompt enter
[Ctrl]-[ENTER] [B]. Press the [Ctrl] and [ENTER] keys
simultaneously and then press [B]. This key sequence initiates
the IRL program stored in the reader's memory. Wwhen the program

is initiated the prompt in Figure B.9 appears on the screen:

MARCORSYSCOM
INVENTORY

FIGURE B.9 Start of Program Screen

After three seconds the screen clears and the user is presented

with the prompt in Figure B.10:

ENTER SERIAL # OR
F3 TO TRANSMIT FILES

FIGURE B.10 Enter Serial Number or Transmit Prompt

At this prompt, the user scans or manually enters the serial
number of the asset being inventoried. 1If the asset inventoried

is on the CMR the user is returned to the prompt in Figure B.10.

107

If the asset inventoried is not on the CMR the reader emits a

sequence of beeps and the screen depicted in Figure B.11 appears:

ITEM NOT ON CMR

FIGURE B.11l 1Itema Not On Inventory Screen

After three seconds, the screen is cleared and the user is

presented with the prompts illustrated in Figures B.12 and B.13.

ENTER DESCRIPTION
OF THE ASSET

FIGURE B.12 BEnter Description Prompt

At these prompts, manually enter the description and location
of the asset just inventoried. After this information is
recorded, the user is returned to the Enter Serial Number Prompt.

This process is continued until the inventory is completed.

ENTER LOCATION
OF THE ASSET

FIGURE B.13 BEnter Location Prompt

If the reader is turned off Quring the inventory, the data is

not lost. To resume wne inventory, press the [ON-OFF] key and at

108

the ready prompt enter [Ctrl])-[ENTER] [B]. The IRL program is

resumed and the user can continue the inventory.

F. RECEIVE INVENTORY RESULTS

This phase of the system uploads the results of an inventory
from the reader to the personal computer. The results are then
processed and two reports are created, the CMR Report and the
Exception Report.

To Receive the inventory results, select option [2)] from the
Main Menu, (see Figure B.l). Press [ENTER] and the Receive File
Option Menu appears, (Figure B.14).

This Menu allows the user to select which file to upload--the
Found or Not Found File--or to upload both files. The proper

selection depends on the needs of the user.

RECEIVE FILE OPTIONS

1. Receive Found file
2. Receive Not Found File
3. Receive Both Files

4. Exit to Main Menu

ENTER (1..4)

FIGURE B.14 Receive File Options Menu

109

-

1. Receive Found File
If all the assets inventoried were on the CMR (i.e., the
Not Found File is empty), select option [1] and press [ENTER].

The Interscan Menu illustrated in Figure B.15 will appear on the

screen.

[u Interscan Uersion 1.2 » I
(F1}l - Netuork Comunication
{F2) - Reader Cosmunication
{(F3] - Terninal Cemwunication
(F4] - Interscan File Tremewnit
{FS] - Interscan File Recsive
(F6] - Reader/Printer Utilities

[Escl] Exit | (F7) local | (F8) DPOS | (F9) Files | (F181 Setup

r Select Function Key]

FIGURE B.15 Interscan Interactive Mode Menu

The first time the Bar Code Inventory System is used,
Intrscan must be configured prior to uploading a file. To
configure the Intrscan software for communication with a reader
refer to the Configure Intrscan Section, at the end of Section F.

Select [F2] for reader communication and the Intrescan
Communication Screen will appear, (Figure B.16). When in this

screen the computer is ready to receive the Found File.

110

Before uploading the file to the computer, connect the
male end of the of the 10-9 Null Modem Cable into the reader's
communication dock and the female end into the COM1l port of the

personal computer.

[e]

Kisg> 87-82-1991 15:53:04 Communication Initiated

[Esc) Exit | (F1] Format | ([F2) IRL { [F3] Data ! (F181 Trace On
n Communication In Process 1

FIGURE B.16 Interscan Communication Screen

Turn the bar code reader on and at the "READY PROMPT"
type [Ctrl]-[ENTER] [B] to start the program. The start of
program screen, (see Figure B.9), will appear for three seconds
followed by the "enter serial number or F3 to transmit"
prompt, (see Figure B.10). At this prompt enter [F3] to transmit

and the screen in Figure B.17 will appear.

ENTER TO XMIT
Fl- FOUND FILE
F2- NOT FOUND FILE

FI B.17 Transmit Screen

111

Enter [Fl] at this prompt and the reader will upload the
file to the computer. The serial numbers will scroll down the
Intermec Communication Screen (Figure B.16). The serial numbers
will be stored in a file called Found on the personal computer.
The upload is complete when serial numbers stop scrolling across
the computer screen.

Press [Esc] twice and the program will process the serial
numbers in the Found file and create the CMR Report. When the
CMR Report is finished the user is returned to the Receive File
Options Menu, (Figure B.14).

2. Receive Not Found File

This option uploads the Not Found File from the bar code
reader and creates an Exception Report. The Exception Report is
a listing of all of the serial numbers found during the inventory
that are not on the CMR. A short description and the location of
the item is also provided.

To initiate this option press [2] then [ENTER] from the
Receive File Options Menu, (see Figure B.14). The Intrscan Menu
illustrated in Figure B.15 will appear on the screen.

The first time the Bar Code Inventory System is used,
Intrscan must be configured prior to uploading a file. To
configure the Intrscan software for communication with a reader

refer to the Configure Intrscan Section, at the end of Section F.

112

Select [F2] for reader communication and the Intrscan
Communication Screen will appear, (see Figure B.16). When in
this screen the computer is ready to receive a File.

Before uploading the file to the computer, connect the
male end of the of the 10-9 Null Modem Cable into the reader's
communication dock and the female end into the COM1 port of the
personal computer.

Turn the bar code reader on and at the ‘*ready prompt®
type [Ctrl]-[ENTER] [B] to start the program. The Start of
Program screen, (see Figure B.9), will appear for three seconds
followed by the "enter serial number or F3 to transmit®
prompt, (see Figure B.10). At this prompt enter [F3] to transmit
and the screen in Figure B.17 will appear.

Enter [F2] to transmit the Not Found File and the reader
will upload the file to the computer. The data uploaded will
scroll down the Intermec Communication Screen (see Figure B.16).
This information will be stored in a file called NoFind on the
personal computer. The upload is complete when the data stops
scrolling down the computer screen.

Press [Esc] twice and the program will process the
information in the NoFind file and create an Exception Report.
When the Exception Report is finished the user is returned to the

Receive File Options Menu, (see Figure B.14).

113

3. Receive Both Files

This option uploads the Found and Not Found File from the
bar code reader and creates both the CMR and Exception Reports.
To initiate this option press [3] then [ENTER] from the Receive
File Options Menu, (see Figure B.1l4). The Intrscan Menu
illustrated in Figure B.15 will appear on the screen.

The first time the Bar Code Inventory System is used,
Intrscan must be configured prior to uploading a file. To
configure the Intrscan software for communication with a reader
refer to the Configure Intrscan Section, at the end of Section F.

Select [F2] for reader communication and the Intrscan
Communication Screen will appear, (see Figure B.16). When in
this screen the computer is ready to receive a File.

Before uploading the file to the computer, connect the
male end of the of the 10-9 Null Modem Cable into the reader's
communication dock and the female end into the COM1l port of the
personal computer.

Turn the bar code reader on and at the "READY PROMPT"
type [Ctrl]-[ENTER] [B] to start the program. The Start of
Program screen, (see Figure B.9), will appear for three seconds
followed by the "enter serial number or F3 to transmit"
prompt, (cee Figure B.10). At this prompt enter [F3] to transmit
and the screen in Figure B.17 will appear.

Enter [Fl] to transmit the Found File and the reader will

upload the file to the computer. Wwhen the serial numbers stop

114

scrolling down the Intermec Communication Screen (see Figure
B.16) the file is uploaded. At the ®"ENTER SERIAL NUMBER OR F3°*
prompt enter [F3]. Press [F2] and the Not Found File will be
transmitted to the computer. The upload is complete when the
data stops scrolling down the computer screen.

Press [Esc] twice and the program will process the
received information into the CMR and Exception Reports. When
the Reports are created the user is returned to the Receive File
Options Menu, (see Figure B.14).

4. Configure Interscan for Communication

To enter the Configuration Menu, select [F10] from the
Interactive Mode Menu, (see Figure B.15). The Configuration Menu
is illustrated in Figure B.18. Use the [SPACE] key to change the
options, the [ENTER] key to move to the next field, and the
[Bksp] key to move to the prior field. cChange the options on the
screen to match Figure B.18 and enter [Esc] to return to the

Interactive Mode Menu.

G. PRINT REPORTS

This option allow the user to print the CMR and Exception
Reports. At the Bar Code Inventory System Main Menu type [3]
then [ENTER]. The Print Report Options Menu, illustrated in
figure B.19 will appear.

This Menu allows the user to select which Report to

print--the CMR Report or Exception Report--or to print both

115

Coml Device - Reader Com2 Device - Printer
Speed - 9600 Speed - 9600
Parity - E Parity - E
Data Bits - 7 Data Bits -7
Stop Bits -1 Stop Bits -1

Text Color -7 Log File Enable - Off

Border Color -7 Trace - On

Modem Command - Tone Host Receive EOM - <CR><LF>

Modem No. Prefix - None Host Transmit EOM - <CR><LF>

[Esc)-Exit [Space]-Options [Enter])-Next Prompt [Bksp)-Last

Options for Configuration

FIGURE B.18 1Interscan Configuration Menu

PRINT REPORT OPTIONS

1. Print CMR Report
2. Print Exception Report
3. Print Both Reports

4. Exit to Main Menu

ENTER (1..4)

FIGURE B.19 Print Report Options Menu

116

Reports. To select which report to print type the number in
front of the desired option and press [ENTER]. The proper
selection depends on the desires of the user.
H. PRINT BAR CODE LABELS

This option prints the bar code labels that will be attached
to the serialized assets. At the Main Menu type [4] then [ENTER]

to access the Print Bar Code Label Menu, (Figure B.20).

PRINT BAR CODE LABEL OPTIONS

1. Print Batch Labels

2. Print Individual Labels

3. Exit to Main Menu

ENTER (1..3)

FIGURE B.20 Print Bar Code Label Options Menu

Before printing any labels, connect the female end of the of
the 25-Pin printer cable into the printer's interface connector
port and the male end into the COM2 port of the personal
computer.

The Print Batch Labels option allows the user to print bar

code labels for all the assets on the CMR. Before selecting this

117

option, the CMRL file must be placed in the BCIS\ADA directory.
To execute this option type [1] then [ENTER].

The Print Individual Labels option allow the user to print
individual labels. When a new asset arrives, the user can select
this option to create a new label and affix this label to the
item. To execute this option type [2] then [ENTER]. The prompt

is figure B.21 will appear on the screen.

At this prompt, type the serial number of the asset and hit
[ENTER]. A bar code label will be printed and figure B.21 will
return to the screen. To return to the Print Bar Code Label

Options type QUIT instead of a serial number.

ENTER A SERIAL NUMBER OR 'QUIT' TO EXIT

FIGURE B.21 Individual Label Prompt

I. EXIT THE SYSTEM
To exit the Bar Code Inventory System, select the option to

return to the Main Menu. At this screen type [5] then [ENTER]

and the user will be returned to the DOS prompt.

118

LIST OF REFERENCES

Page-Jones, M., Practical Guide to Structured Systems Design,
2nd ed., Prentice-Hall, Inc., 1988.

Pressman, R.S., Software Engineering: A Practitioner's Approach,
3rd ed., McGraw-Hill, Inc., 1992.

Sedgewick, R., Algorithms, Addison-Wesley Publishing Company,
Inc., 1984.

Whitten, J.L., Bentley, L.D., and Barlow, V.M., Systems Analysis
and Design Methods, 2nd ed., Irwin, Inc., 1989.

119

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

Director, Training and Education
MCCDC, Code C46

1019 Elliot Road

Quantico, VA 22134-5027

Director ISMD

MARCORSYSCOM

2033 Barnett Avenue, Suite 315
Quantico, VA 22134-5010

Professor William Haga, Code AS/HA
Naval Postgraduate School
Monterey, CA 93943-5002

Professor Shu S. Liao, Code AS/LC
Naval Postgraduate School
Monterey, CA 93943-5002

Computer Technology Programs, Code 370
Naval Postgraduate School
Monterey, CA 93943-5002

Capt. Richard M. Hancock

206 Greensview Drive
Cary, NC 27511

120

